scholarly journals The Influence of Hydrogen Bond Donors on the CO2 Absorption Mechanism by the Bio-Phenol-Based Deep Eutectic Solvents

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7167
Author(s):  
Ze Wang ◽  
Zonghua Wang ◽  
Jie Chen ◽  
Congyi Wu ◽  
Dezhong Yang

Recently, deep eutectic solvents (DESs), a new type of solvent, have been studied widely for CO2 capture. In this work, the anion-functionalized deep eutectic solvents composed of phenol-based ionic liquids (ILs) and hydrogen bond donors (HBDs) ethylene glycol (EG) or 4-methylimidazole (4CH3-Im) were synthesized for CO2 capture. The phenol-based ILs used in this study were prepared from bio-derived phenols carvacrol (Car) and thymol (Thy). The CO2 absorption capacities of the DESs were determined. The absorption mechanisms by the DESs were also studied using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and mass spectroscopy. Interestingly, the results indicated that CO2 reacted with both the phenolic anions and EG, generating the phenol-based carbonates and the EG-based carbonates, when CO2 interacted with the DESs formed by the ILs and EG. However, CO2 only reacted with the phenolic anions when the DESs formed by the ILs and 4CH3-Im. The results indicated that the HBDs impacted greatly on the CO2 absorption mechanism, suggesting the mechanism can be tuned by changing the HBDs, and the different reaction pathways may be due to the steric hinderance differences of the functional groups of the HBDs.

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5595
Author(s):  
Mohaned Aboshatta ◽  
Vitor Magueijo

Amine absorption (or amine scrubbing) is currently the most established method for CO2 capture; however, it has environmental shortcomings and is energy-intensive. Deep eutectic solvents (DESs) are an interesting alternative to conventional amines. Due to their biodegradability, lower toxicity and lower prices, DESs are considered to be “more benign” absorbents for CO2 capture than ionic liquids. In this work, the CO2 absorption capacity of choline-chloride/levulinic-acid-based (ChCl:LvAc) DESs was measured at different temperatures, pressures and stirring speeds using a vapour–liquid equilibrium rig. DES regeneration was performed using a heat treatment method. The DES compositions studied had ChCl:LvAc molar ratios of 1:2 and 1:3 and water contents of 0, 2.5 and 5 mol%. The experimental results showed that the CO2 absorption capacity of the ChCl:LvAc DESs is strongly affected by the operating pressure and stirring speed, moderately affected by the temperature and minimally affected by the hydrogen bond acceptor (HBA):hydrogen bond donator (HBD) molar ratio as well as water content. Thermodynamic properties for CO2 absorption were calculated from the experimental data. The regeneration of the DESs was performed at different temperatures, with the optimal regeneration temperature estimated to be 80 °C. The DESs exhibited good recyclability and moderate CO2/N2 selectivity.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1268
Author(s):  
Yan Wang ◽  
Shuhang Ren ◽  
Yucui Hou ◽  
Weize Wu

Up to now, many kinds of deep eutectic solvents (DESs) were investigated for the capture of acidic gases from flue gases. In this review, non-functionalized and functionalized DESs, including binary and ternary DESs, for SO2, CO2 and NO capture, are summarized based on the mechanism of absorption, physical interaction or chemical reaction. New strategies for improving the absorption capacity are introduced in this review. For example, a third component can be introduced to form a ternary DES to suppress the increase in viscosity and improve the CO2 absorption capacity. DESs, synthesized with halogen salt hydrogen bond acceptors (HBAs) and functionalized hydrogen bond donors (HBDs), can be used for the absorption of SO2 and NO with high absorption capacities and low viscosities after absorption, due to physicochemical interaction between gases and DESs. Emphasis is given to introducing the absorption capacities of acidic gases in these DESs, the mechanism of the absorption, and the ways to enhance the absorption capacity.


2019 ◽  
Vol 48 (27) ◽  
pp. 10199-10209 ◽  
Author(s):  
Ming-Yu Zhao ◽  
Jian-Nan Zhu ◽  
Peng Li ◽  
Wei Li ◽  
Ting Cai ◽  
...  

Seven transition metal–organic frameworks with structures ranging from one-dimensional chains to three-dimensional networks have been synthesized in deep eutectic solvents.


2020 ◽  
Vol 8 (35) ◽  
pp. 13408-13417 ◽  
Author(s):  
Wen-Jing Jiang ◽  
Jian-Bo Zhang ◽  
Ya-Ting Zou ◽  
Hai-Long Peng ◽  
Kuan Huang

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1023
Author(s):  
Xiao Wang ◽  
Congyi Wu ◽  
Dezhong Yang

Protic ionic liquids have been regarded as promising materials to capture CO2, because they can be easily synthesized with an attractive capacity. In this work, we studied the CO2 absorption mechanism by protic ionic liquids (ILs) composed of diamino protic cations and azolide anions. Results of 1H nuclear magnetic resonance (NMR), 13C NMR, 2-D NMR and fourier-transform infrared (FTIR) spectroscopy tests indicated that CO2 reacted with the cations rather than with the anions. The possible reaction pathway between CO2 and azolide-based protic ILs is proposed, in which CO2 reacts with the primary amine group generated from the deprotonation of the cation by the azolide anion.


2021 ◽  
Author(s):  
Weiwei Wang ◽  
Zifeng Yang ◽  
Yaqin Zhang ◽  
Hongyan He ◽  
Wenjuan Fang ◽  
...  

In this study, an efficient catalytic system composed of deep eutectic solvents (DESs) was developed by adjusting the basicity of hydrogen bond donors (HBDs) to synthesize poly (isosorbide) carbonate (PIC)...


Author(s):  
Edyta Słupek ◽  
Patrycja Makoś

The paper presents a synthesis of deep eutectic solvents (DESs) based on choline chloride (ChCl) as hydrogen bond acceptor and phenol (Ph), glycol ethylene (EG), and levulinic acid (Lev) as hydrogen bond donors in 1:2 molar ratio. DESs were successfully used as absorption solvents for removal of dimethyl disulfide from (DMDS) from model biogas steam. Several parameters affecting the absorption capacity and absorption rate has been optimized including kind of DES, temperature, the volume of absorbent, model biogas flow rate, and initial concentration of DMDS. Furthermore, reusability and regeneration of DESs by means of adsorption and nitrogen barbotage followed by the mechanism of absorptive desulfurization by means of density functional theory (DFT) as well as FT-IR analysis were investigated. Experimental results indicate that the most promising DES for biogas purification is ChCl:Ph, due to high absorption capacity, relatively long absorption rate, and easy regeneration. The research on the absorption mechanism revealed that van der Waal interaction is the main driving force for DMDS removal from model biogas.


Sign in / Sign up

Export Citation Format

Share Document