scholarly journals CO2 Absorption Mechanism by Diamino Protic Ionic Liquids (DPILs) Containing Azolide Anions

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1023
Author(s):  
Xiao Wang ◽  
Congyi Wu ◽  
Dezhong Yang

Protic ionic liquids have been regarded as promising materials to capture CO2, because they can be easily synthesized with an attractive capacity. In this work, we studied the CO2 absorption mechanism by protic ionic liquids (ILs) composed of diamino protic cations and azolide anions. Results of 1H nuclear magnetic resonance (NMR), 13C NMR, 2-D NMR and fourier-transform infrared (FTIR) spectroscopy tests indicated that CO2 reacted with the cations rather than with the anions. The possible reaction pathway between CO2 and azolide-based protic ILs is proposed, in which CO2 reacts with the primary amine group generated from the deprotonation of the cation by the azolide anion.

2015 ◽  
Vol 12 (2) ◽  
pp. 13
Author(s):  
Muhamad Faridz Osman ◽  
Karimah Kassim

The coordination complexes of Co(II) and Zn(II) with Schiff bases derived from o-phenylenediamine and substituted 2-hydroxybenzaldehyde were prepared All compounds were characterized by Fourier transform infrared (FTIR) spectroscopy and Nuclear magnetic resonance (NMR) spectroscopy elemental analyzers. They were analyzed using impedance spectroscopy in the frequency range of 100Hz-1 MHz. LI and L2 showed higher conductivity compared to their metal complexes, which had values of 1.3 7 x 10-7 and 6.13 x 10-8 S/cm respectively. 


2021 ◽  
Vol 125 (5) ◽  
pp. 1416-1428
Author(s):  
Jing Ma ◽  
Yutong Wang ◽  
Xueqing Yang ◽  
Mingxuan Zhu ◽  
Baohe Wang

Sign in / Sign up

Export Citation Format

Share Document