scholarly journals Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation–Extraction and Headspace Solid-Phase Microextraction

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7422
Author(s):  
Martina Machová ◽  
Tomáš Bajer ◽  
David Šilha ◽  
Karel Ventura ◽  
Petra Bajerová

The volatile components of areca nuts were isolated by headspace solid-phase microextraction (HS-SPME, DVB/CAR/PDMS fiber extraction) and simultaneous hydrodistillation–extraction (SHDE) and analyzed by gas chromatography/mass spectrometry. Furthermore, all SHDE fractions were tested for antimicrobial activity using the disk diffusion method on nine Gram-negative and Gram-positive bacteria (Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus canis, Streptococcus pyogenes, and Candida albicans). In total, 98 compounds (mainly alcohols, carbonyl compounds, fatty acids, esters, terpenes, terpenoids, and aliphatic hydrocarbons) were identified in SHDE fractions and by using SPME extraction Fatty acids were the main group of volatile constituents detected in all types of extracts. The microorganism most sensitive to the extract of the areca nut was Streptococcus canis. The results can provide essential information for the application of different treatments of areca nuts in the canning industry or as natural antibiotics.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 224
Author(s):  
Yeong-Geun Lee ◽  
Won-Sil Choi ◽  
Seung-Ok Yang ◽  
Jeon Hwang-Bo ◽  
Hyoun-Geun Kim ◽  
...  

Abeliophyllum distichum (Oleaceae), which is the only species in the monotypic genus and is grown only on the Korean peninsula, has a high scarcity value. Its five variants (white, pink, round, blue, and ivory) have different morphological characteristics in terms of the color of petals and sepals or shape of the fruits. Despite its high value, there has been no study on variant classification except in terms of their morphological characteristics. Thus, we performed a volatile component analysis of A. distichum flowers and multivariate data analyses to reveal the relationship between fragments emitted from five variants of A. distichum flowers with their morphological characteristics. As a result, 66 volatile components of this plant were identified by headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS), showing unique patterns for each set of morphological characteristics, especially the color of the petals. These results suggest that morphological characteristics of each variant are related to the volatile composition.


2019 ◽  
Vol 14 (6) ◽  
pp. 1934578X1985912
Author(s):  
Andreas Douros ◽  
Anastasia Christopoulou ◽  
Stefanos Kikionis ◽  
Konstantinos Nikolaou ◽  
Helen Skaltsa

In the present study, the heartwood and the sapwood of a thick wood disc from a dated Cedrus brevifolia trunk, and the resin were analyzed for their volatile components. All samples were subjected to headspace solid-phase microextraction followed by gas chromatography mass spectrometry analysis. The main constituents were β-himachalene (22.2 %) in heartwood and (25.0 %) in sapwood, and α-pinene (37.8 %) in resin.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 415 ◽  
Author(s):  
Kung ◽  
Chen ◽  
Chao ◽  
Wu ◽  
Lin ◽  
...  

Hsian-tsao (Platostoma palustre Blume) is a traditional Taiwanese food. It is admired by many consumers, especially in summer, because of its aroma and taste. This study reports the analysis of the volatile components present in eight varieties of Hsian-tsao using headspace solid-phase microextraction (HS-SPME) and simultaneous distillation-extraction (SDE) coupled with gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). HS-SPME is a non-heating method, and the results show relatively true values of the samples during flavor isolation. However, it is a kind of headspace analysis that has the disadvantage of a lower detection ability to relatively higher molecular weight compounds; also, the data are not quantitative, but instead are used for comparison. The SDE method uses distillation 2 h for flavor isolation; therefore, it quantitatively identifies more volatile compounds in the samples while the samples withstand heating. Both methods were used in this study to investigate information about the samples. The results showed that Nongshi No. 1 had the highest total quantity of volatile components using HS-SPME, whereas SDE indicated that Taoyuan Mesona 1301 (TYM1301) had the highest volatile concentration. Using the two extraction methods, 120 volatile components were identified. Fifty-six volatile components were identified using HS-SPME, and the main volatile compounds were α-pinene, β-pinene, and limonene. A total of 108 volatile components were identified using SDE, and the main volatile compounds were α-bisabolol, β-caryophyllene, and caryophyllene oxide. Compared with SDE, HS-SPME sampling extracted a significantly higher amount of monoterpenes and had a poorer detection of less volatile compounds, such as sesquiterpenes, terpene alcohols, and terpene oxide.


2018 ◽  
Vol 13 (8) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Armando A. Durant-Archibold ◽  
Noris Salazar Allen ◽  
Anette Garrido ◽  
Jose Gudiño Ledezma ◽  
Mahabir P. Gupta

We report for the first time the chemical composition of volatile components (VOCs) of two subspecies, D. hirsuta subsp. hirsuta and D. hirsuta subsp. nepalensis, of the liverwort Dumortiera hirsuta from Panama by using headspace-solid phase microextraction-gas chromatography-mass spectrometry in order to assess distinguishing markers between the two species. Forty VOCs were identified in total for both subspecies. Of these, 34 are reported for the first time in D. hirsuta. Furthermore, both subspecies showed clear differences in the type and amount of VOCs. The major compounds in D. hirsuta subsp. hirsuta were α-gurjunene, β-selinene, α-guaiene, α-humulene and β-caryophyllene; while in D. hirsuta subsp. nepalensis were ledene, α-gurjunene, β-caryophyllene and α-guaiene, respectively. Two oxygenated sesquiterpenes, globulol and nerolidol, could be considered as possible distinguishing chemical markers between these two subspecies. We conclude that both morphotypes of D. hirsuta are chemically different.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 115 ◽  
Author(s):  
Xian-kui Ma ◽  
Xiao-fei Li ◽  
Jian-yong Zhang ◽  
Jie Lei ◽  
Wei-wei Li ◽  
...  

Selaginella doederleinii (SD) is a perennial medicinal herb widely distributed in China. In this study, the volatile components of SD from two regions (24 batches), namely Zhejiang and Guizhou, were determined by combining headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS). After investigating different influence factors, the optimal conditions for extraction were as follows: The sample amount of 1 g, the polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber of 65 µm, the extraction time of 20 min, and the extraction temperature of 100 °C. Based on the above optimum conditions, 58 volatiles compounds, including 20 terpenes, 11 alkanes, 3 alcohols, 6 ketones, 3 esters, 11 aldehydes, 1 ether, 1 aromatic, 1 phenol, and 1 furan, were found and identified in SD. Furthermore, hierarchical cluster analysis and principal component analysis were successfully applied to distinguish the chemical constituents of SD from two regions. Additionally, anethol, zingerone, 2,4-di-tert-butylphenol, ledene, hexyl hexanoate, α-cadinol, phytone, hinesol, decanal, octadecene, cedren, 7-tetradecene, copaene, β-humulene, 2-butyl-2-octenal, tetradecane, cedrol, calacorene, 6-dodecanone, β-caryophyllene, 4-oxoisophorone, γ-nonanolactone, 2-pentylfuran, 1,2-epoxyhexadecane, carvacrol, n-pentadecane, diisobutyl phthalate, farnesene, n-heptadecane, linalool, 1-octen-3-ol, phytane, and β-asarone were selected as the potential markers for discriminating SD from 24 habitats in Zhejiang and Guizhou by partial least squares discrimination analysis (PLS-DA). This study revealed the differences in the components of SD from different regions, which could provide a reference for the future quality evaluation.


2014 ◽  
Vol 9 (12) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Sayamol Sukkaew ◽  
Patcharee Pripdeevech ◽  
Chalermporn Thongpoon ◽  
Theeraphan Machan ◽  
Rattana Wongchuphan

The volatile components of Murraya koenigii fresh leaves, collected from Surat Thani province, Thailand were studied by using headspace (HS) solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The four fibers employed to extract the volatiles were polydimethylsiloxane (PDMS), polydimethylsiloxane-divinylbenzene (PDMS-DVB), carboxane-polydimethylsiloxane (CAR-PDMS) and polydimethylsiloxane-divinylbenzene-carboxane (PDMS-DVB-CAR). The volatile constituents of M. koenigii fresh leaves were also extracted by hydrodistillation and analyzed by GC-MS. Fifty-one compounds were identified by these fibers. Five major compounds, γ–terpinene, β-caryophyllene, β-phellandrene, α-selinene and α-pinene, were detected in all fibers. The PDMS-DVB-CAR fiber was considered as the best for trapping key volatiles of M. koenigii fresh leaves.


Sign in / Sign up

Export Citation Format

Share Document