simultaneous distillation extraction
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 11)

H-INDEX

23
(FIVE YEARS 2)

Cosmetics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 117
Author(s):  
Bárbara Silva Ribeiro ◽  
Maria de Fátima Ferreira ◽  
José Luís Moreira ◽  
Lúcia Santos

The present study describes a procedure to isolate essential oils from Rosmarinus officinalis L. using simultaneous distillation–extraction (SDE). Rosmarinus officinalis L. can be used for medicinal purposes, as well in the cooking and cosmetics industries. SDE technique extraction combines a steam distillation combined with a continuous extraction using a solvent or a co-solvent mixture, providing faster extractions with low extraction solvent volumes. The effect of the solvent nature and the extraction time on the simultaneous distillation–extraction efficiency was evaluated. The best performance was achieved using pentane as a solvent for 1 h of extraction. The essential oils obtained by simultaneous distillation–extraction extracts were analyzed by gas chromatography with flame ionization detection (GC-FID). Extraction efficiencies ranged from 40 to 70% for the majority of the compounds tested, and the precision (measured by the relative standard deviation) varied between 6 and 35%. Among the compounds analyzed the most abundant in the Rosmarinus officinalis L. sample were 1,8-cineole, (-) –borneol, α-pinene, (S)-(-)- α–terpineol, (-)-bornyl acetate, linalool, and 2,2,6-trimethylcyclohexanone. The SDE method proved to be a suitable option for obtaining extracts free from cuticular waxes or chlorophylls.


Author(s):  
Ji Hyeon Son ◽  
Md Atikul Islam ◽  
Joon Ho Hong ◽  
Ji Young Jeong ◽  
Ok Yeon Song ◽  
...  

AbstractThis study was designed to analyze the volatile organic compounds in the leaves of Ambrosia artemisiifolia L. and Artemisia annua L. from Korea. For extraction of volatile compounds, headspace-solid phase micro extraction (HS-SPME) and simultaneous distillation extraction (SDE) were applied and analyzed by gas chromatography/mass spectrometry (GC/MS). From the results, SDE extraction was found to give the highest concentration of volatile compounds with an average concentration of 1,237.79 mg/kg for A. annua L. leaves compared to 1,122.73 mg/kg by HS-SPME technique. A total of 116 volatile organic compounds were identified, including 76 similar volatile organic compounds detected by both the methods of extraction in leaves of subject species at varying concentrations. Among these 33 volatile organic compounds were reported for the first time from the subject plant species. Thus the present research findings extend the characterization of volatile organic compounds from leaves of A. annua L. and A. artemisiifolia L. species and reported some distinguishing compounds which may be used for their discrimination.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Thyago G. Miranda ◽  
Raynon Joel M. Alves ◽  
Ronilson F. de Souza ◽  
José Guilherme S. Maia ◽  
Pablo Luis B. Figueiredo ◽  
...  

Abstract Background Many natural compounds have been identified and synthesized by the advancement of bryophytes phytochemistry studies. This work aimed to report the composition of Neckeropsis undulata (Hedw.) Reichardt moss volatiles, sampled in the Combú Island, Belém city, Pará state, Brazil. The volatile concentrate of N. undulata was obtained by a simultaneous distillation-extraction micro-system, analyzed by GC and GC-MS, and reported for the first time. Results Ten compounds were identified in the volatile concentrate, corresponding to 91.6% of the total, being 1-octen-3-ol (35.7%), α-muurolol (21.4%), naphthalene (11.3%), and n-hexanal (10.0 %) the main constituents. Most of the constituents of the N. undulata volatile concentrate have been previously identified in other mosses, and liverworts spread wide in the world. Conclusions 1-Octen-3-ol, n-hexanal, 2-ethylhexanol, isoamyl propionate, and octan-3-one are already known metabolic products obtained from enzymatic oxidation of polyunsaturated fatty acids, belonging to the large family of minor oxygenated compounds known as oxylipins. The knowledge of the composition of volatiles from moss N. undulata could contribute to the Neckeraceae species’ chemotaxonomy.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4744
Author(s):  
Samuel Cavalcante do Amaral ◽  
Agenor Valadares Santos ◽  
Maria Paula da Cruz Schneider ◽  
Joyce Kelly Rosário da Silva ◽  
Luciana Pereira Xavier

Cyanobacteria exhibit great biotechnological potential due to their capacity to produce compounds with various applicability. Volatile organic compounds (VOCs) possess low molecular weight and high vapor pressure. Many volatiles produced by microorganisms have biotechnological potential, including antimicrobial activity. This study aimed to investigate the VOCs synthesized by cyanobacterium Synechococcus sp. strain GFB01, and the influence of nitrate and phosphate on its antibacterial potential. The strain was isolated from the surface of the freshwater lagoon Lagoa dos Índios, Amapá state, in Northern Brazil. After cultivation, the VOCs were extracted by a simultaneous distillation-extraction process, using a Likens-Nickerson apparatus (2 h), and then identified by GC-MS. The extracts did not display inhibitory activity against the Gram-positive bacteria tested by the disk-diffusion agar method. However, the anti-Salmonella property in both extracts (methanol and aqueous) was detected. The main VOCs identified were heptadecane (81.32%) and octadecyl acetate (11.71%). To the best of our knowledge, this is the first study of VOCs emitted by a cyanobacterium from the Amazon that reports the occurrence of 6-pentadecanol and octadecyl acetate in cyanobacteria.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3628
Author(s):  
Hui Ni ◽  
Qing-Xiang Jiang ◽  
Ting Zhang ◽  
Gao-Ling Huang ◽  
Li-Jun Li ◽  
...  

The aroma of an instant white tea (IWT) was extracted through simultaneous distillation–extraction (SDE) and analyzed by sensory evaluation, gas chromatography-mass spectrometry-olfactometry (GC-MS-O), aroma reconstruction, omission test and synergistic interaction analysis. Sensory evaluation showed the IWT was dominated with floral and sweet notes. The SDE extract had the aroma similar to the IWT. The main volatile components in the SDE extract were benzyl alcohol, linalool, hotrienol, geraniol, α-terpineol, coumarin, camphene, benzeneacetaldehyde, 2-hexanone, cis-jasmin lactone and phenylethyl alcohol. GC-MS-O and aroma reconstruction experiments showed 16 aroma-active compounds. Linalool, trans-β-damascenone and camphene were the major contributors to floral, sweet and green notes based on flavor dilution analysis and omission test. Linalool and trans-β-damascenone had synergistic effect to promote floral and sweet notes. Camphene and trans-β-damascenone had synergistic effect to reduce green and sweet notes. The study helps to understand the aroma of IWT and antagonism interactions among aroma-active volatiles.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 398
Author(s):  
Martyna Natalia Wieczorek ◽  
Małgorzata Majcher ◽  
Henryk Jeleń

To analyze aroma active components in a food product, the crucial step is to select a suitable extraction technique. It should provide isolation of all components responsible for aroma creation, without the formation of any artifacts during the procedure. Preferably, the extraction method should yield analyzed compounds in detectable levels. The presented study aimed to compare three popular extraction techniques used in flavor studies: solid-phase microextraction (SPME), solvent-assisted flavor evaporation (SAFE), and simultaneous distillation extraction (SDE) in order to isolate aroma components from broccoli (Brassica oleracea L. var. italica). Obtained extracts were analyzed by gas chromatography-olfactmetry (GC-O) to determine compounds with aroma activity as well as gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-ToFMS) to identify them. Thirty-four aroma active compounds were detected in broccoli by the applied techniques. SPME and SAFE together gave the full profile of aroma active components on chromatograms from GC-O, without artifacts that occurred in the SDE extract. SPME was particularly useful in the identification of early eluting compounds, while SAFE enabled isolating compounds with relatively low partition coefficients. Despite all the disadvantages of the SDE method, it leads to the identification of pyrazines, which were important contributors to the overall aroma.


2019 ◽  
Vol 92 (1) ◽  
pp. 1228-1235 ◽  
Author(s):  
Pei-Han Liao ◽  
Hui-Hsien Yang ◽  
Pei-Chi Wu ◽  
Noor Hidayat Abu Bakar ◽  
Pawel L. Urban

Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 415 ◽  
Author(s):  
Kung ◽  
Chen ◽  
Chao ◽  
Wu ◽  
Lin ◽  
...  

Hsian-tsao (Platostoma palustre Blume) is a traditional Taiwanese food. It is admired by many consumers, especially in summer, because of its aroma and taste. This study reports the analysis of the volatile components present in eight varieties of Hsian-tsao using headspace solid-phase microextraction (HS-SPME) and simultaneous distillation-extraction (SDE) coupled with gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). HS-SPME is a non-heating method, and the results show relatively true values of the samples during flavor isolation. However, it is a kind of headspace analysis that has the disadvantage of a lower detection ability to relatively higher molecular weight compounds; also, the data are not quantitative, but instead are used for comparison. The SDE method uses distillation 2 h for flavor isolation; therefore, it quantitatively identifies more volatile compounds in the samples while the samples withstand heating. Both methods were used in this study to investigate information about the samples. The results showed that Nongshi No. 1 had the highest total quantity of volatile components using HS-SPME, whereas SDE indicated that Taoyuan Mesona 1301 (TYM1301) had the highest volatile concentration. Using the two extraction methods, 120 volatile components were identified. Fifty-six volatile components were identified using HS-SPME, and the main volatile compounds were α-pinene, β-pinene, and limonene. A total of 108 volatile components were identified using SDE, and the main volatile compounds were α-bisabolol, β-caryophyllene, and caryophyllene oxide. Compared with SDE, HS-SPME sampling extracted a significantly higher amount of monoterpenes and had a poorer detection of less volatile compounds, such as sesquiterpenes, terpene alcohols, and terpene oxide.


Sign in / Sign up

Export Citation Format

Share Document