scholarly journals Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 789 ◽  
Author(s):  
Rosita Primavera ◽  
Bhavesh D Kevadiya ◽  
Ganesh Swaminathan ◽  
Rudilyn Joyce Wilson ◽  
Angelo De Pascale ◽  
...  

Type-1 diabetes is characterized by high blood glucose levels due to a failure of insulin secretion from beta cells within pancreatic islets. Current treatment strategies consist of multiple, daily injections of insulin or transplantation of either the whole pancreas or isolated pancreatic islets. While there are different forms of insulin with tunable pharmacokinetics (fast, intermediate, and long-acting), improper dosing continues to be a major limitation often leading to complications resulting from hyper- or hypo-glycemia. Glucose-responsive insulin delivery systems, consisting of a glucose sensor connected to an insulin infusion pump, have improved dosing but they still suffer from inaccurate feedback, biofouling and poor patient compliance. Islet transplantation is a promising strategy but requires multiple donors per patient and post-transplantation islet survival is impaired by inflammation and suboptimal revascularization. This review discusses how nano- and micro-technologies, as well as tissue engineering approaches, can overcome many of these challenges and help contribute to an artificial pancreas-like system.

2016 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Brian L Levy ◽  
◽  
Thomas W McCann ◽  
Jr and Daniel A Finan ◽  
◽  
...  

Living with type 1 diabetes (T1D) presents many challenges in terms of daily living. Insulin users need to frequently monitor their blood glucose levels and take multiple injections per day and/or multiple boluses through an insulin infusion pump, with the consequences of failing to match the insulin dose to the body’s needs resulting in hypoglycaemia and hyperglycaemia. The former can result in seizures, coma and even death; the latter can have both acute and long-term health implications. Many patients with T1D also fail to meet their treatment goals. In order to reduce the burdens of self-administering insulin, and improve efficacy and safety, there is a need to at least partially remove the patient from the loop via a closed-loop ‘artificial pancreas’ system. The Hypoglycaemia-Hyperglycaemia Minimizer (HHM) System, comprising a continuous, subcutaneous insulin infusion pump, continuous glucose monitor (CGM) and closed-loop insulin dosing algorithm, is able to predict changes in blood glucose and adjust insulin delivery accordingly to help keep the patient at normal glucose levels. Early clinical data indicate that this system is feasible, effective and safe, and has the potential to dramatically improve the therapeutic outcomes and quality of life for people with T1D.


Diabetes ◽  
2015 ◽  
Vol 64 (7) ◽  
pp. 2506-2512 ◽  
Author(s):  
Lars Krogvold ◽  
Oskar Skog ◽  
Görel Sundström ◽  
Bjørn Edwin ◽  
Trond Buanes ◽  
...  

2013 ◽  
Vol 45 (11) ◽  
pp. e51-e51 ◽  
Author(s):  
Ui-Jin Bae ◽  
Mi-Young Song ◽  
Hyun-Young Jang ◽  
Hyo Jin Gim ◽  
Jae-Ha Ryu ◽  
...  

Author(s):  
Anthony Ryan Hatch ◽  
Julia T. Gordon ◽  
Sonya R. Sternlieb

The new artificial pancreas system includes a body-attached blood glucose sensor that tracks glucose levels, a worn insulin infusion pump that communicates with the sensor, and features new software that integrates the two systems. The artificial pancreas is purportedly revolutionary because of its closed-loop design, which means that the machine can give insulin without direct patient intervention. It can read a blood sugar and administer insulin based on an algorithm. But, the hardware for the corporate artificial pancreas is expensive and its software code is closed-access. Yet, well-educated, tech-savvy diabetics have been fashioning their own fully automated do-it-yourself (DIY) artificial pancreases for years, relying on small-scale manufacturing, open-source software, and inventive repurposing of corporate hardware. In this chapter, we trace the corporate and DIY artificial pancreases as they grapple with issues of design and accessibility in a content where not everyone can become a diabetic cyborg. The corporate artificial pancreas offers the cyborg low levels of agency and no ownership and control over his or her own data; it also requires access to health insurance in order to procure and use the technology. The DIY artificial pancreas offers patients a more robust of agency but also requires high levels of intellectual capital to hack the devices and make the system work safely. We argue that efforts to increase agency, radically democratize biotechnology, and expand information ownership in the DIY movement are characterized by ideologies and social inequalities that also define corporate pathways.


2021 ◽  
Author(s):  
Marco Infante ◽  
David A. Baidal ◽  
Michael R. Rickels ◽  
Andrea Fabbri ◽  
Jay S. Skyler ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 204173142110277
Author(s):  
Edward X Han ◽  
Juan Wang ◽  
Mehmet Kural ◽  
Bo Jiang ◽  
Katherine L Leiby ◽  
...  

Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments. To address these limitations, an islet transplantation approach using an acellular vascular graft as a vascular scaffold has been developed, termed the BioVascular Pancreas (BVP). To create the BVP, islets are seeded as an outer coating on the surface of an acellular vascular graft, using fibrin as a hydrogel carrier. The BVP can then be anastomosed as an arterial (or arteriovenous) graft, which allows fully oxygenated arterial blood with a pO2 of roughly 100 mmHg to flow through the graft lumen and thereby supply oxygen to the islets. In silico simulations and in vitro bioreactor experiments show that the BVP design provides adequate survivability for islets and helps avoid islet hypoxia. When implanted as end-to-end abdominal aorta grafts in nude rats, BVPs were able to restore near-normoglycemia durably for 90 days and developed robust microvascular infiltration from the host. Furthermore, pilot implantations in pigs were performed, which demonstrated the scalability of the technology. Given the potential benefits provided by the BVP, this tissue design may eventually serve as a solution for transplantation of pancreatic islets to treat or cure type 1 diabetes.


2018 ◽  
Vol 12 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Roberto Visentin ◽  
Enrique Campos-Náñez ◽  
Michele Schiavon ◽  
Dayu Lv ◽  
Martina Vettoretti ◽  
...  

Background: A new version of the UVA/Padova Type 1 Diabetes (T1D) Simulator is presented which provides a more realistic testing scenario. The upgrades to the previous simulator, which was accepted by the Food and Drug Administration in 2013, are described. Method: Intraday variability of insulin sensitivity (SI) has been modeled, based on clinical T1D data, accounting for both intra- and intersubject variability of daily SI. Thus, time-varying distributions of both subject’s basal insulin infusion and insulin-to-carbohydrate ratio were calculated and made available to the user. A model of “dawn” phenomenon based on clinical T1D data has been also included. Moreover, the model of subcutaneous insulin delivery has been updated with a recently developed model of commercially available fast-acting insulin analogs. Models of both intradermal and inhaled insulin pharmacokinetics have been included. Finally, new models of error affecting continuous glucose monitoring and self-monitoring of blood glucose devices have been added. Results: One hundred in silico adults, adolescent, and children have been generated according to the above modifications. The new simulator reproduces the intraday glucose variability observed in clinical data, also describing the nocturnal glucose increase, and the simulated insulin profiles reflect real life data. Conclusions: The new modifications introduced in the T1D simulator allow to extend its domain of validity from “single-meal” to “single-day” scenarios, thus enabling a more realistic framework for in silico testing of advanced diabetes technologies including glucose sensors, new insulin molecules and artificial pancreas.


Sign in / Sign up

Export Citation Format

Share Document