The Artificial Pancreas in Cyborg Bodies

Author(s):  
Anthony Ryan Hatch ◽  
Julia T. Gordon ◽  
Sonya R. Sternlieb

The new artificial pancreas system includes a body-attached blood glucose sensor that tracks glucose levels, a worn insulin infusion pump that communicates with the sensor, and features new software that integrates the two systems. The artificial pancreas is purportedly revolutionary because of its closed-loop design, which means that the machine can give insulin without direct patient intervention. It can read a blood sugar and administer insulin based on an algorithm. But, the hardware for the corporate artificial pancreas is expensive and its software code is closed-access. Yet, well-educated, tech-savvy diabetics have been fashioning their own fully automated do-it-yourself (DIY) artificial pancreases for years, relying on small-scale manufacturing, open-source software, and inventive repurposing of corporate hardware. In this chapter, we trace the corporate and DIY artificial pancreases as they grapple with issues of design and accessibility in a content where not everyone can become a diabetic cyborg. The corporate artificial pancreas offers the cyborg low levels of agency and no ownership and control over his or her own data; it also requires access to health insurance in order to procure and use the technology. The DIY artificial pancreas offers patients a more robust of agency but also requires high levels of intellectual capital to hack the devices and make the system work safely. We argue that efforts to increase agency, radically democratize biotechnology, and expand information ownership in the DIY movement are characterized by ideologies and social inequalities that also define corporate pathways.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243465
Author(s):  
Anna Laura Herzog ◽  
Jonas Busch ◽  
Christoph Wanner ◽  
Holger K. von Jouanne-Diedrich

Continuous glucose monitoring (CGM) improves treatment with lower blood glucose levels and less patient effort. In combination with continuous insulin application, glycemic control improves and hypoglycemic episodes should decrease. Direct feedback of CGM to continuous subcutaneous insulin application, using an algorithm is called a closed-loop (CL) artificial pancreas system. Commercial devices stop insulin application by predicting hypoglycemic blood glucose levels through direct interaction between the sensor and pump. The prediction is usually made for about 30 minutes and insulin delivery is restarted at the previous level if a rise in blood glucose is predicted within the next 30 minutes (hybrid closed loop system, HCL this is known as a predictive low glucose suspend system (PLGS)). In a fully CL system, sensor and pump communicate permanently with each other. Hybrid closed-loop (HCL) systems, which require the user to estimate the meal size and provide a meal insulin basis, are commercially available in Germany at the moment. These systems result in fewer hyperglycemic and hypoglycemic episodes with improved glucose control. Open source initiatives have provided support by building do-it-yourself CL (DIYCL) devices for automated insulin application since 2014, and are used by a tech-savvy subgroup of patients. The first commercial hybrid CL system has been available in Germany since September 2019. We surveyed 1054 patients to determine which devices are currently used, which features would be in demand by potential users, and the benefits of DIYCL systems. 9.7% of these used a DIYCL system, while 50% would most likely trust these systems but more than 85% of the patients would use a commercial closed loop system, if available. The DIYCL users had a better glucose control regarding their time in range (TIR) and glycated hemoglobin (HbA1c).


2015 ◽  
Vol 6 (3) ◽  
pp. 1-16 ◽  
Author(s):  
Caterina Lazaro ◽  
Erdal Oruklu ◽  
Ali Cinar

This paper describes a distributed sensor platform for a new breed of artificial pancreas devices. In recent work, a multi-variable adaptive algorithm has been proposed which incorporates physical activity of the patients for accurate prediction and control of glucose levels. In order to facilitate this algorithm, the authors integrate a smartphone and multiple sensors including activity trackers and a glucose monitor into a distributed system. The proposed sensor platform provides real-time data access for the artificial pancreas control algorithm hosted on a remote device.


2016 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Brian L Levy ◽  
◽  
Thomas W McCann ◽  
Jr and Daniel A Finan ◽  
◽  
...  

Living with type 1 diabetes (T1D) presents many challenges in terms of daily living. Insulin users need to frequently monitor their blood glucose levels and take multiple injections per day and/or multiple boluses through an insulin infusion pump, with the consequences of failing to match the insulin dose to the body’s needs resulting in hypoglycaemia and hyperglycaemia. The former can result in seizures, coma and even death; the latter can have both acute and long-term health implications. Many patients with T1D also fail to meet their treatment goals. In order to reduce the burdens of self-administering insulin, and improve efficacy and safety, there is a need to at least partially remove the patient from the loop via a closed-loop ‘artificial pancreas’ system. The Hypoglycaemia-Hyperglycaemia Minimizer (HHM) System, comprising a continuous, subcutaneous insulin infusion pump, continuous glucose monitor (CGM) and closed-loop insulin dosing algorithm, is able to predict changes in blood glucose and adjust insulin delivery accordingly to help keep the patient at normal glucose levels. Early clinical data indicate that this system is feasible, effective and safe, and has the potential to dramatically improve the therapeutic outcomes and quality of life for people with T1D.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 789 ◽  
Author(s):  
Rosita Primavera ◽  
Bhavesh D Kevadiya ◽  
Ganesh Swaminathan ◽  
Rudilyn Joyce Wilson ◽  
Angelo De Pascale ◽  
...  

Type-1 diabetes is characterized by high blood glucose levels due to a failure of insulin secretion from beta cells within pancreatic islets. Current treatment strategies consist of multiple, daily injections of insulin or transplantation of either the whole pancreas or isolated pancreatic islets. While there are different forms of insulin with tunable pharmacokinetics (fast, intermediate, and long-acting), improper dosing continues to be a major limitation often leading to complications resulting from hyper- or hypo-glycemia. Glucose-responsive insulin delivery systems, consisting of a glucose sensor connected to an insulin infusion pump, have improved dosing but they still suffer from inaccurate feedback, biofouling and poor patient compliance. Islet transplantation is a promising strategy but requires multiple donors per patient and post-transplantation islet survival is impaired by inflammation and suboptimal revascularization. This review discusses how nano- and micro-technologies, as well as tissue engineering approaches, can overcome many of these challenges and help contribute to an artificial pancreas-like system.


10.29007/kcrp ◽  
2018 ◽  
Author(s):  
Xin Chen ◽  
Souradeep Dutta ◽  
Sriram Sankaranarayanan

The artificial pancreas concept automates the delivery of insulin to patients with type-1 diabetes, sensing the blood glucose levels through a continuous glucose monitor (CGM) and using an insulin infusion pump to deliver insulin. Formally verifying control algorithms against physiological models of the patient is an important challenge. In this paper, we present a case study of a simple hybrid multi-basal control system that switches to different preset insulin delivery rates over various ranges of blood glucose levels. We use the Dalla- Man model for modeling the physiology of the patient and a hybrid automaton model of the controller. First, we reduce the problem state space and replace nonpolynomial terms by approximations with very small errors in order to simplify the model. Nevertheless, the model still remains nonlinear with up to 9 state variables.Reachability analysis on this hybrid model is used to verify that the blood glucose levels remain within a safe range overnight. This poses challenges, including (a) the model exhibits many discrete jumps in a relatively small time interval, and (b) the entire time horizon corresponding to a full night is 720 minutes, wherein the controller time period is 5 minutes. To overcome these difficulties, we propose methods to effectively handle time- triggered jumps and merge flowpipes over the same time interval. The evaluation shows that the performance can be improved with the new techniques.


Author(s):  
Hariyadi DM ◽  
Athiyah U ◽  
Hendradi E ◽  
Rosita N ◽  
Erawati T ◽  
...  

The prevention of Diabetic Mellitus (DM) and its complications is the main aim of this study, in addition to the training of lotion foot care application and the development of small scale industry. The research team delivered knowledge in the form of training on Diabetic Mellitus, healthy food, treatment and prevention of complications, and small-scale production of cosmetic products. The aim of this study was to determine the correlation between training on diabetic and lotion foot care application as preventive measures against diabetic complications on the patient's blood glucose levels in the community of residents in Banyuurip Jaya, Surabaya. It was expected from this training that the knowledge of the residents increases and people living with diabetic undergo lifestyle changes and therefore blood sugar levels can be controlled. The parameters measured in this research were blood glucose levels, the anti diabetic drug types consumed, and compliance on diabetics. This study used the data taken from 60 patients with DM over a period of one month. Questionnaires and log books was used to retrieve data and changes in blood glucose levels in diabetic patients. The results showed the demographic data of patients with type 2 diabetic of 85% female and 15% male, with the range of patients aged of 61-70 years of 46.67% and had history of diabetic (90%). The history of drugs consumed by respondents was anti diabetic drugs such as metformin (40%), glimepiride (33.37%) and insulin (6.67%). In addition, the increased knowledge of DM patients after being given the training compared to before training was shown in several questions in the questionnaire. A statistical analysis using t-test analyzed a correlation between training provided in order to enhance understanding of the patient, as well as correlation with blood glucose levels. A paired T-test showed that there was a relationship between the knowledge of trainees before and after training (p less than 0.05). An interesting result was that there was no relationship between blood glucose levels before and after training provided (p> 0.05).


2007 ◽  
Vol 158 (8) ◽  
pp. 235-242 ◽  
Author(s):  
Hans Rudolf Heinimann

The term «precision forestry» was first introduced and discussed at a conference in 2001. The aims of this paper are to explore the scientific roots of the precision concept, define «precision forestry», and sketch the challenges that the implementation of this new concept may present to practitioners, educators, and researchers. The term «precision» does not mean accuracy on a small scale, but instead refers to the concurrent coordination and control of processes at spatial scales between 1 m and 100 km. Precision strives for an automatic control of processes. Precision land use differs from precision engineering by the requirements of gathering,storing and managing spatio-temporal variability of site and vegetation parameters. Practitioners will be facing the challenge of designing holistic, standardized business processes that are valid for whole networks of firms,and that follow available standards (e.g., SCOR, WoodX). There is a need to educate and train forestry professionals in the areas of business process re-engineering, computer supported management of business transactions,methods of remote sensing, sensor technology and control theory. Researchers will face the challenge of integrating plant physiology, soil physics and production sciences and solving the supply chain coordination problem (SCCP).


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Mohd Helmi Sani ◽  
Frank Baganz

At present, there are a number of commercial small scale shaken systems available on the market with instrumented controllable microbioreactors such as Micro–24 Microreactor System (Pall Corporation, Port Washington, NY) and M2P Biolector, (M2P Labs GmbH, Aachen, Germany). The Micro–24 system is basically an orbital shaken 24–well plate that operates at working volume 3 – 7 mL with 24 independent reactors (deep wells, shaken and sparged) running simultaneously. Each reactor is designed as single use reactor that has the ability to continuously monitor and control the pH, DO and temperature. The reactor aeration is supplied by sparging air from gas feeds that can be controlled individually. Furthermore, pH can be controlled by gas sparging using either dilute ammonia or carbon dioxide directly into the culture medium through a membrane at the bottom of each reactor. Chen et al., (2009) evaluated the Micro–24 system for the mammalian cell culture process development and found the Micro–24 system is suitable as scaledown tool for cell culture application. The result showed that intra-well reproducibility, cell growth, metabolites profiles and protein titres were scalable with 2 L bioreactors.


2020 ◽  
Vol 11 (6) ◽  
pp. 1217-1235 ◽  
Author(s):  
Jothydev Kesavadev ◽  
Seshadhri Srinivasan ◽  
Banshi Saboo ◽  
Meera Krishna B ◽  
Gopika Krishnan

Sign in / Sign up

Export Citation Format

Share Document