scholarly journals Advances in the Design of pH-Sensitive Cubosome Liquid Crystalline Nanocarriers for Drug Delivery Applications

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 963 ◽  
Author(s):  
Omar Mertins ◽  
Patrick D. Mathews ◽  
Angelina Angelova

Nanostructure bicontinuous cubic phase self-assembled materials are receiving expanding applications as biocompatible delivery systems in various therapeutic fields. The functionalization of cubosome, spongosome, hexosome and liposome nanocarriers by pH-sensitive lipids and/or pH-sensitive polymer shells offers new opportunities for oral and topical drug delivery towards a new generation of cancer therapies. The electrochemical behavior of drug compounds may favor pH-triggered drug release as well. Here, we highlight recent investigations, which explore the phase behavior of mixed nonlamellar lipid/fatty acid or phospholipid systems for the design of pH-responsive and mucoadhesive drug delivery systems with sustained-release properties. X-ray diffraction and small-angle X-ray scattering (SAXS) techniques are widely used in the development of innovative delivery assemblies through detailed structural analyses of multiple amphiphilic compositions from the lipid/co-lipid/water phase diagrams. pH-responsive nanoscale materials and nanoparticles are required for challenging therapeutic applications such as oral delivery of therapeutic proteins and peptides as well as of poorly water-soluble substances. Perspective nanomedicine developments with smart cubosome nanocarriers may exploit compositions elaborated to overcome the intestinal obstacles, dual-drug loaded pH-sensitive liquid crystalline architectures aiming at enhanced therapeutic efficacy, as well as composite (lipid/polyelectrolyte) types of mucoadhesive controlled release colloidal cubosomal formulations for the improvement of the drugs’ bioavailability.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yulin Chen ◽  
Ping Ma ◽  
Shuangying Gui

Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed.


2020 ◽  
Vol 12 (1) ◽  
pp. 152-160
Author(s):  
Sung-Up Choi ◽  
Mi Jeong Kim ◽  
Sung Tae Kim ◽  
Hee-Cheol Kim ◽  
Kwan Hyung Cho ◽  
...  

Self-microemulsifying drug delivery systems represent a stable formulation for enhancing the solubility and absorption efficacy of poorly soluble drugs. In this study, a self-microemulsifying drug delivery system (SMEDDS) was designed and applied for oral administration of poorly water-soluble pazopanib, a Biopharmaceutical Classification Class II anticancer drug. The solubility of pazopanib was first evaluated using various oils, surfactants, and co-surfactants. Pseudoternary phase diagrams were plotted to identify the selfemulsifying region and the phase behavior of optimized vehicle selected after screening of oils, surfactants, and co-surfactants. The SMEDDS comprising Capmul MCM NF, Tween 80, and PEG 400 was fabricated for incorporating pazopanib. It exhibited spherical droplets with size of 86.9 ± 0.8 nm and zeta potential value of –14.7 ± 0.1 mV. In vitro dissolution profiles of the SMEDDS were 2.40-fold (pH 4.0) and 6.45-fold (pH 6.8) higher than that of pazopanib powder. In particular, pazopanib-SMEDDS showed pH-independent dissolution profiles. In vivo pharmacokinetic parameters of the SMEDDS revealed enhanced bioavailability of pazopanib, which was 3.32-fold higher than that of pazopanib powder when administered orally. Taken together, the SMEDDS is effective as an oral delivery vehicle for pazopanib. In addition, our findings demonstrate that self-microemulsifying drug delivery systems could be a potential tool for improving bioavailability of other poorly water-soluble drugs.


Author(s):  
Daniela Díaz-Zepeda ◽  
René D. Peralta-Rodríguez ◽  
Bertha Puente-Urbina ◽  
Gladis Cortez-Mazatan ◽  
H. Iván Meléndez-Ortiz

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Wei Xu ◽  
Peixue Ling ◽  
Tianmin Zhang

Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs) can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1) protection of the loaded drug from the harsh environment of the GI tract, (2) release of the drug in a controlled manner at target sites, (3) prolongation of the residence time in the gut by mucoadhesion, and (4) inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 460
Author(s):  
Minja Mladenović ◽  
Ibrahim Morgan ◽  
Nebojša Ilić ◽  
Mohamad Saoud ◽  
Marija V. Pergal ◽  
...  

Ruthenium complexes are attracting interest in cancer treatment due to their potent cytotoxic activity. However, as their high toxicity may also affect healthy tissues, efficient and selective drug delivery systems to tumour tissues are needed. Our study focuses on the construction of such drug delivery systems for the delivery of cytotoxic Ru(II) complexes upon exposure to a weakly acidic environment of tumours. As nanocarriers, mesoporous silica nanoparticles (MSN) are utilized, whose surface is functionalized with two types of ligands, (2-thienylmethyl)hydrazine hydrochloride (H1) and (5,6-dimethylthieno[2,3-d]pyrimidin-4-yl)hydrazine (H2), which were attached to MSN through a pH-responsive hydrazone linkage. Further coordination to ruthenium(II) center yielded two types of nanomaterials MSN-H1[Ru] and MSN-H2[Ru]. Spectrophotometric measurements of the drug release kinetics at different pH (5.0, 6.0 and 7.4) confirm the enhanced release of Ru(II) complexes at lower pH values, which is further supported by inductively coupled plasma optical emission spectrometry (ICP-OES) measurements. Furthermore, the cytotoxicity effect of the released metallotherapeutics is evaluated in vitro on metastatic B16F1 melanoma cells and enhanced cancer cell-killing efficacy is demonstrated upon exposure of the nanomaterials to weakly acidic conditions. The obtained results showcase the promising capabilities of the designed MSN nanocarriers for the pH-responsive delivery of metallotherapeutics and targeted treatment of cancer.


2017 ◽  
Vol 508 ◽  
pp. 517-524 ◽  
Author(s):  
Qingtao Liu ◽  
Jinming Hu ◽  
Michael R. Whittaker ◽  
Thomas P. Davis ◽  
Ben J. Boyd

2017 ◽  
Vol 135 (2) ◽  
pp. 45678 ◽  
Author(s):  
Rafael de Oliveira Pedro ◽  
Susana Pereira ◽  
Francisco M. Goycoolea ◽  
Carla C. Schmitt ◽  
Miguel G. Neumann

Sign in / Sign up

Export Citation Format

Share Document