scholarly journals Two-Step Synthesis of CuS/C@PANI Nanocomposite as Advanced Electrode Materials for Supercapacitor Applications

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1034 ◽  
Author(s):  
Qing Liu ◽  
Shihang Zhang ◽  
Yan Xu

In this study, the dense cloud-like structured CuS nanoparticles were successfully prepared using a simple two-step hydrothermal method. The experimental temperature was the most important factor that affected the microstructure and surface functions of CuS/C. Therefore, the CuS/C electrodes were synthesized at different temperatures (80 °C, 120 °C, and 160 °C). Subsequently, their crystallographic phase and morphologies as well as the structure of the as-prepared electrodes were analyzed in detail. The electrode prepared at 120 °C (CuS/C-120) was determined to have a perfect microstructure, high specific capacitance, and good rate performance. To further improve the electrochemical performance of this electrode, it was combined with polyaniline (PANI) to obtain a CuS/C-120@PANI electrode via the cyclic voltammetric electrodeposition method. The CuS/C-120@PANI electrode exhibits a specific capacitance of 425.53 Fg−1 at a current density of 1 Ag−1 and a good cycling stability of 89.86% after 3000 cycles. The perfect architecture of CuS/C-120@PANI maximizes the synergistic effect between its different components and provides abundant electrochemically reactive sites, promoting the diffusion and transfer of electrolyte ions during the electrochemical reaction processes. Detailed analysis shows that the CuS/C-120@PANI electrode has great potential for use in high-performance energy storage devices.

NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050082
Author(s):  
Lei Su ◽  
Chunyong Zhang ◽  
Li Shu ◽  
Linna Huang ◽  
Jianning Li ◽  
...  

A series of metal oxide nanocomposites have been successfully synthesized by electrospinning technology. The obtained nanocomposites (Cu2O-Mn3O4-NiO) are an ordered arrangement of metal oxide particles (10[Formula: see text]nm), with the shape like bead chain. The acquired Cu2O-Mn3O4-NiO ternary nanocomposites were used as electrode materials to manufacture a supercapacitor. Electrochemical tests showed that the synthesis of nanocomposites made of electrode materials had good electrochemical performance in 6[Formula: see text]mol/L KOH electrolyte. The results showed that at a scan rate of 5[Formula: see text]mV/s, the specific capacitance of Cu2O-Mn3O4-NiO had a larger specific capacitance of 1306[Formula: see text]F/g than NiO, Cu2O-NiO and Mn3O4-NiO. The excellent electrochemical performance showed that the electrostatic spinning method is an effective technology for developing nanocomposites for energy storage devices.


2021 ◽  
pp. 095400832110231
Author(s):  
Fengyan Lv ◽  
Shanxin Xiong ◽  
Xiaoqin Wang ◽  
Jia Chu ◽  
Runlan Zhang ◽  
...  

Free-standing flexible supercapacitive electrodes have practical application for wearable energy storage devices. In this paper, graphene paper (GP), a flexible electrode substrate, was prepared by one-step reduction of graphene oxide (GO) using HI solution. GP can be used independently as a flexible electrode with specific capacitance of 227 F/g. In order to make up for the shortage of GP specific capacitance storage, polyaniline (PANI) with high specific capacitance and good electrical conductivity was selected to composite with GP by electrochemical polymerization approach. This method to fabricate electrode material by direct electrochemical polymerization avoids the use of conductive binder and organic solvent. Owing to the specific capacitance contribution of PANI and GP, the PANI/GP composites exhibit higher specific capacitance when the polymerization time is 30 s and the polymerization voltage is 0.8 V. At 1 A/g current density, the specific capacitance of composite is up to 759 F/g, which is 3.34 times of neat GP.


2018 ◽  
Vol 42 (15) ◽  
pp. 12357-12360 ◽  
Author(s):  
Chandu Nagaraju ◽  
Chandu V. V. Muralee Gopi ◽  
Jin-Woo Ahn ◽  
Hee-Je Kim

As-fabricated nanoparticle structured MoS2 and WS2 electrodes delivered high specific capacitance, excellent rate capability and good cycling stability.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaona Wang ◽  
Zhenyu Zhou ◽  
Zhijian Sun ◽  
Jinho Hah ◽  
Yagang Yao ◽  
...  

Abstract Coaxial fiber-shaped supercapacitors are a promising class of energy storage devices requiring high performance for flexible and miniature electronic devices. Yet, they are still struggling from inferior energy density, which comes from the limited choices in materials and structure used. Here, Zn-doped CuO nanowires were designed as 3D framework for aligned distributing high mass loading of MnO2 nanosheets. Zn could be introduced into the CuO crystal lattice to tune the covalency character and thus improve charge transport. The Zn–CuO@MnO2 as positive electrode obtained superior performance without sacrificing its areal and gravimetric capacitances with the increasing of mass loading of MnO2 due to 3D Zn–CuO framework enabling efficient electron transport. A novel category of free-standing asymmetric coaxial fiber-shaped supercapacitor based on Zn0.11CuO@MnO2 core electrode possesses superior specific capacitance and enhanced cell potential window. This asymmetric coaxial structure provides superior performance including higher capacity and better stability under deformation because of sufficient contact between the electrodes and electrolyte. Based on these advantages, the as-prepared asymmetric coaxial fiber-shaped supercapacitor exhibits a high specific capacitance of 296.6 mF cm−2 and energy density of 133.47 μWh cm−2. In addition, its capacitance retention reaches 76.57% after bending 10,000 times, which demonstrates as-prepared device’s excellent flexibility and long-term cycling stability.


2021 ◽  
Author(s):  
Muhammad Irfan ◽  
Xianhua Liu ◽  
Suraya Mushtaq ◽  
Jonnathan Cabrera ◽  
Pingping Zhang

Abstract Development of sustainable electrochemical energy storage devices faces great challenge in exploring highly efficient and low cost electrode materials. Biomass waste derived carbonaceous materials can be used as an alternative to expensive metals in supercapacitor. However, their application limited by low performance. In this study, the combination use of persimmon waste derived carbon and transition metal nitride demonstrated strong potential for supercapacitor application. Persimmon based carbonaceous gel decorated with bimetallic-nitride (N-NiCo/PC) was firstly synthesized through a green hydrothermal method. Electrochemical properties of N-NiCo/PC as electrode in 6 M KOH electrolyte solution were evaluated by using cyclic voltammetry (CV) and charge-discharge measurements. The N-NiCo/PC exhibited 895.5 F/g specific capacitance at 1 A/g current density and maintained 91.5% capacitance retention after 900 cycles. Hence, the bimetallic nitride-based-composite catalyst is a potentially suitable material for high-performance energy storage devices. In addition, this work demonstrated a promising pathway for transforming environmental waste into sustainable energy conversion materials.


Author(s):  
Juan Yu ◽  
Xuyang Wang ◽  
Jiaxin Peng ◽  
Xuefeng Jia ◽  
Linbo Li ◽  
...  

Abstract Biomass-activated carbon materials are promising electrode materials for lithium-ion hybrid capacitors (LiCs) because of their natural hierarchical pore structure. The efficient utilization of structural pores in activated carbon is very important for their electrochemical performance. Herein, porous biomass-activated carbon (PAC) with large specific surface area was prepared using a one-step activation method with biomass waste as the carbon source and ZnCl2 as the activator. To further improve its pore structure utilization efficiency, the PAC was doped with nitrogen using urea as the nitrogen source. The experimental results confirmed that PAC-1 with a high nitrogen doping level of 4.66% exhibited the most efficient pore utilization among all the samples investigated in this study. PAC-1 exhibited 92% capacity retention after 8000 cycles, showing good cycling stability. Then, to maximize the utilization of high-efficiency energy storage devices, LiNi0.8Co0.15Al0.05O2 (NCA), a promising cathode material for lithium-ion batteries with high specific capacity, was compounded with PAC-1 in different ratios to obtain NCA@PC composites. The NCA@PC-9 composite exhibited excellent capacitance in LiCs and an energy density of 210.9 Wh kg-1 at a high power density of 13.3 kW kg-1. These results provide guidelines for the design of high-performance and low-cost energy storage devices.


2021 ◽  
Author(s):  
Yucai Li ◽  
Yan Zhao ◽  
Shiwei Song ◽  
Jian wang

Abstract Core-shell structured NiCo2S4@NiMoO4 is considered to be one of the most promising electrode materials for supercapacitors due to its high specific capacitance and excellent cycle performance. In this work, we report NiCo2S4@NiMoO4 nanosheets on Ni foam by two-step fabricated method. The as-obtained product has high capacitance of 1102.5 F g− 1 at 1 A g− 1. The as-assembled supercapacitor has also a high energy density of 37.6 W h kg− 1 and superior cycle performance with 85% capacitance retention. The electrode materials reported here might exhibits potential applications in future energy storage devices.


RSC Advances ◽  
2015 ◽  
Vol 5 (64) ◽  
pp. 51773-51778 ◽  
Author(s):  
Jinfeng Sun ◽  
Jinqing Wang ◽  
Zhangpeng Li ◽  
Zhigang Yang ◽  
Shengrong Yang

3D hierarchical bismuth (Bi)-based compounds with controllable sizes and morphologies exhibit high specific capacitance and superior rate capability.


Sign in / Sign up

Export Citation Format

Share Document