Electrochemical fabrication of polyaniline/graphene paper (PANI/GP) supercapacitor electrode materials on free-standing flexible graphene paper

2021 ◽  
pp. 095400832110231
Author(s):  
Fengyan Lv ◽  
Shanxin Xiong ◽  
Xiaoqin Wang ◽  
Jia Chu ◽  
Runlan Zhang ◽  
...  

Free-standing flexible supercapacitive electrodes have practical application for wearable energy storage devices. In this paper, graphene paper (GP), a flexible electrode substrate, was prepared by one-step reduction of graphene oxide (GO) using HI solution. GP can be used independently as a flexible electrode with specific capacitance of 227 F/g. In order to make up for the shortage of GP specific capacitance storage, polyaniline (PANI) with high specific capacitance and good electrical conductivity was selected to composite with GP by electrochemical polymerization approach. This method to fabricate electrode material by direct electrochemical polymerization avoids the use of conductive binder and organic solvent. Owing to the specific capacitance contribution of PANI and GP, the PANI/GP composites exhibit higher specific capacitance when the polymerization time is 30 s and the polymerization voltage is 0.8 V. At 1 A/g current density, the specific capacitance of composite is up to 759 F/g, which is 3.34 times of neat GP.

2018 ◽  
Vol 42 (9) ◽  
pp. 7399-7406 ◽  
Author(s):  
Depeng Zhao ◽  
Fang Hu ◽  
Ahmad Umar ◽  
Xiang Wu

The rational design and construction of supercapacitor electrode materials with prominent energy and power density play an indispensable role for their potential application in energy storage devices.


NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050082
Author(s):  
Lei Su ◽  
Chunyong Zhang ◽  
Li Shu ◽  
Linna Huang ◽  
Jianning Li ◽  
...  

A series of metal oxide nanocomposites have been successfully synthesized by electrospinning technology. The obtained nanocomposites (Cu2O-Mn3O4-NiO) are an ordered arrangement of metal oxide particles (10[Formula: see text]nm), with the shape like bead chain. The acquired Cu2O-Mn3O4-NiO ternary nanocomposites were used as electrode materials to manufacture a supercapacitor. Electrochemical tests showed that the synthesis of nanocomposites made of electrode materials had good electrochemical performance in 6[Formula: see text]mol/L KOH electrolyte. The results showed that at a scan rate of 5[Formula: see text]mV/s, the specific capacitance of Cu2O-Mn3O4-NiO had a larger specific capacitance of 1306[Formula: see text]F/g than NiO, Cu2O-NiO and Mn3O4-NiO. The excellent electrochemical performance showed that the electrostatic spinning method is an effective technology for developing nanocomposites for energy storage devices.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1034 ◽  
Author(s):  
Qing Liu ◽  
Shihang Zhang ◽  
Yan Xu

In this study, the dense cloud-like structured CuS nanoparticles were successfully prepared using a simple two-step hydrothermal method. The experimental temperature was the most important factor that affected the microstructure and surface functions of CuS/C. Therefore, the CuS/C electrodes were synthesized at different temperatures (80 °C, 120 °C, and 160 °C). Subsequently, their crystallographic phase and morphologies as well as the structure of the as-prepared electrodes were analyzed in detail. The electrode prepared at 120 °C (CuS/C-120) was determined to have a perfect microstructure, high specific capacitance, and good rate performance. To further improve the electrochemical performance of this electrode, it was combined with polyaniline (PANI) to obtain a CuS/C-120@PANI electrode via the cyclic voltammetric electrodeposition method. The CuS/C-120@PANI electrode exhibits a specific capacitance of 425.53 Fg−1 at a current density of 1 Ag−1 and a good cycling stability of 89.86% after 3000 cycles. The perfect architecture of CuS/C-120@PANI maximizes the synergistic effect between its different components and provides abundant electrochemically reactive sites, promoting the diffusion and transfer of electrolyte ions during the electrochemical reaction processes. Detailed analysis shows that the CuS/C-120@PANI electrode has great potential for use in high-performance energy storage devices.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaona Wang ◽  
Zhenyu Zhou ◽  
Zhijian Sun ◽  
Jinho Hah ◽  
Yagang Yao ◽  
...  

Abstract Coaxial fiber-shaped supercapacitors are a promising class of energy storage devices requiring high performance for flexible and miniature electronic devices. Yet, they are still struggling from inferior energy density, which comes from the limited choices in materials and structure used. Here, Zn-doped CuO nanowires were designed as 3D framework for aligned distributing high mass loading of MnO2 nanosheets. Zn could be introduced into the CuO crystal lattice to tune the covalency character and thus improve charge transport. The Zn–CuO@MnO2 as positive electrode obtained superior performance without sacrificing its areal and gravimetric capacitances with the increasing of mass loading of MnO2 due to 3D Zn–CuO framework enabling efficient electron transport. A novel category of free-standing asymmetric coaxial fiber-shaped supercapacitor based on Zn0.11CuO@MnO2 core electrode possesses superior specific capacitance and enhanced cell potential window. This asymmetric coaxial structure provides superior performance including higher capacity and better stability under deformation because of sufficient contact between the electrodes and electrolyte. Based on these advantages, the as-prepared asymmetric coaxial fiber-shaped supercapacitor exhibits a high specific capacitance of 296.6 mF cm−2 and energy density of 133.47 μWh cm−2. In addition, its capacitance retention reaches 76.57% after bending 10,000 times, which demonstrates as-prepared device’s excellent flexibility and long-term cycling stability.


2021 ◽  
Author(s):  
Yucai Li ◽  
Yan Zhao ◽  
Shiwei Song ◽  
Jian wang

Abstract Core-shell structured NiCo2S4@NiMoO4 is considered to be one of the most promising electrode materials for supercapacitors due to its high specific capacitance and excellent cycle performance. In this work, we report NiCo2S4@NiMoO4 nanosheets on Ni foam by two-step fabricated method. The as-obtained product has high capacitance of 1102.5 F g− 1 at 1 A g− 1. The as-assembled supercapacitor has also a high energy density of 37.6 W h kg− 1 and superior cycle performance with 85% capacitance retention. The electrode materials reported here might exhibits potential applications in future energy storage devices.


RSC Advances ◽  
2015 ◽  
Vol 5 (64) ◽  
pp. 51773-51778 ◽  
Author(s):  
Jinfeng Sun ◽  
Jinqing Wang ◽  
Zhangpeng Li ◽  
Zhigang Yang ◽  
Shengrong Yang

3D hierarchical bismuth (Bi)-based compounds with controllable sizes and morphologies exhibit high specific capacitance and superior rate capability.


2018 ◽  
Vol 281 ◽  
pp. 854-858
Author(s):  
Xi Cheng Gao ◽  
Jian Qiang Bi ◽  
Wei Li Wang ◽  
Guo Xun Sun ◽  
Xu Xia Hao ◽  
...  

NiFe2O4 powders were synthesized by a facile hydrothermal method at 180°C followed by a thermal treatment at 300°C. The phase composition and morphology were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the NiFe2O4 powders were well-crystallized, and they possessed a particle size in the range of 50-100 nm. The electrochemical property was characterized via cyclic voltammetry (CV) and constant current charge-discharge method. Encouragingly, the NiFe2O4 powders had an excellent electrochemical property, whose specific capacitance reached 266.84 F/g at the electric current density of 1 A/g due to the small particle size. Compared with other Fe-based metal compound oxides, NiFe2O4 has a better electrochemical performance, which can be widely used in the supercapacitor electrode materials.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2718
Author(s):  
Shujahadeen B. Aziz ◽  
M. A. Brza ◽  
Iver Brevik ◽  
M. H. Hamsan ◽  
Rebar T. Abdulwahid ◽  
...  

In this work, plasticized polymer electrolyte films consisting of chitosan, ammonium nitrate (NH4NO3) and glycerol for utilization in energy storage devices was presented. Various microscopic, spectroscopic and electrochemical techniques were used to characterize the concerned electrolyte and the electrical double-layer capacitor (EDLC) assembly. The nature of complexation between the polymer electrolyte components was examined via X-ray diffraction analysis. In the morphological study, field emission scanning electron microscopy (FESEM) was used to investigate the impact of glycerol as a plasticizer on the morphology of films. The polymer electrolyte (conducting membrane) was found to have a conductivity of 3.21 × 10−3 S/cm. It is indicated that the number density (n), mobility (μ) and diffusion coefficient (D) of ions are increased with the glycerol amount. The mechanism of charge storing was clarified, which implies a non-Faradaic process. The voltage window of the polymer electrolyte is 2.32 V. It was proved that the ion is responsible for charge-carrying via measuring the transference number (TNM). It was also determined that the internal resistance of the EDLC assembly lay between 39 and 50 Ω. The parameters associated with the EDLC assembly are of great importance and the specific capacitance (Cspe) was determined to be almost constant over 1 to 1000 cycles with an average of 124 F/g. Other decisive parameters were found: energy density (18 Wh/kg) and power density (2700 W/kg).


NANO ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. 1950157
Author(s):  
Shasha Jiao ◽  
Tiehu Li ◽  
Chuanyin Xiong ◽  
Chen Tang ◽  
Alei Dang ◽  
...  

In this study, a three-dimensional hybrid was synthesized via depositing of carbon nanotubes (CNTs) and ferroferric oxide (Fe3O4) particles on the abandoned disposable sheet mask fabric, followed by the polymerization of polypyrrole (PPY). The as-prepared nanocomposite shows superior electrochemical performances when it was used for the material for the flexible supercapacitor electrode. Benefiting from the synergistic effect of CNTs, Fe3O4 and PPY in such a porous structure, cyclic voltammetry and galvanostatic charge/discharge measurements indicated that the as-prepared hybrid possessed a good reversibility and high specific capacity at various scanning rates. It turned out that the as-prepared electrode demonstrated a high specific capacitance of 221.7[Formula: see text]F/g at the scanning rate of 50[Formula: see text]mV/s and long-life cycling stability of 88.2% after 10[Formula: see text]000 cycles. Besides, the electrode composite had good flexibility after repeated bending times of 3000. With the exception of improved electrochemical properties, this hybrid electrode material also showed many advantages, including facile preparation, flexibility and cost savings. These results will provide new ideas and solutions to design and fabricate the flexible supercapacitors, which has great prospect in the development of energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document