scholarly journals Synthesis of Radioluminescent CaF2:Ln Core, Mesoporous Silica Shell Nanoparticles for Use in X-ray Based Theranostics

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1447
Author(s):  
Hayden Winter ◽  
Megan J. Neufeld ◽  
Lydia Makotamo ◽  
Conroy Sun ◽  
Andrea M. Goforth

X-ray radiotherapy is a common method of treating cancerous tumors or other malignant lesions. The side effects of this treatment, however, can be deleterious to patient quality of life if critical tissues are affected. To potentially lower the effective doses of radiation and negative side-effects, new classes of nanoparticles are being developed to enhance reactive oxygen species production during irradiation. This report presents the synthesis and radiotherapeutic efficacy evaluation of a new nanoparticle formulation designed for this purpose, composed of a CaF2 core, mesoporous silica shell, and polyethylene glycol coating. The construct was additionally doped with Tb and Eu during the CaF2 core synthesis to prepare nanoparticles (NPs) with X-ray luminescent properties for potential application in fluorescence imaging. The mesoporous silica shell was added to provide the opportunity for small molecule loading, and the polyethylene glycol coating was added to impart aqueous solubility and biocompatibility. The potential of these nanomaterials to act as radiosensitizers for enhancing X-ray radiotherapy was supported by reactive oxygen species generation assays. Further, in vitro experiments indicate biocompatibility and enhanced cellular damage during X-ray radiotherapy.

RSC Advances ◽  
2019 ◽  
Vol 9 (68) ◽  
pp. 39924-39931 ◽  
Author(s):  
Kecan Lin ◽  
Ziguo Lin ◽  
Yujie Li ◽  
Youshi Zheng ◽  
Da Zhang

Herein, we design tumor microenvironment specific active nano sono-chemodynamic agent for synergistic photodynamic–chemodynamic cancer therapy.


2010 ◽  
Vol 8 (2) ◽  
pp. 279-291 ◽  
Author(s):  
Venny Santosa ◽  
Leenawaty Limantara

Photodynamic therapy (PDT) is a considerably new kind of photochemotherapeutic treatment in medical field. It combines the use of three components, which are a photosensitizer, light and oxygen. Photosensitizer is a compound activated by light. The application can be oral, topical or intravenous. It usually member of porphyrin group with ampiphilic characteristics. Photosensitizer can be of generation I, II or III, each generation step develops more specificity, selectivity and deeper tissue application. This review will discuss photosensitizer development consecutively, with its benefit and lackness. The light used is usually on red region, while the oxygen is involved in reactive oxygen species generation. Its mechanism action can go through either in type I or type II reaction. This kind of therapy is usually being used in oncology, especially in superficial and in-lining cancers, dermatology and ophthalmology field. This therapy can be safely given to patients with complication and has distinct advantages compare with other treatment such as chemotherapy and surgery. It also considerably has lesser side effects and risks. Broader application is being developed through various experiments and photosensitizer modification.   Keywords: light spectrum, photoactivation, photodynamic therapy, photosensitizer


2020 ◽  
Vol 3 (11) ◽  
pp. 7408-7417
Author(s):  
Zideng Dai ◽  
Junkai Cao ◽  
Zhaoming Guo ◽  
Kun Zheng ◽  
Xue-Zhi Song ◽  
...  

The eff ect of the non-opiate analog of leu-enkephalin (peptide NALE: Phe – D – Ala – Gly – Phe – Leu – Arg) on the reactive oxygen species generation in the heart of albino rats in the early postnatal period was studied. Peptide NALE was administered intraperitoneally in the dose of 100 μ/kg daily from 2 to 6 days of life. Reactive oxygen species generation was assessed by chemiluminescence in the heart homogenates of 7-day-old animals. Decreasing of reactive oxygen species generation nearly by 30 % and an increasing in antioxidant system activity by the 20-27 %, compared with the control parameters, were found. The antioxidant eff ect of peptide NALE is associated with the presence of the amino acid Arg in the structure of the peptide. An analogue of NALE peptide, devoid of Arg (peptide Phe – D – Ala – Gly – Phe – Leu – Gly), had a signifi cant lower antioxidant eff ect. The NO-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) in the dose 50 mg/kg, administered with NALE peptide, reduced the severity of the NALE antioxidant eff ect. The results of the study suggest that the pronounced antioxidant eff ect of NALE peptide in the heart of albino rats, at least in part, is due to the interaction with the nitric oxide system.


Sign in / Sign up

Export Citation Format

Share Document