scholarly journals The Natural-Mineral-Based Novel Nanomaterial IFMC Increases Intravascular Nitric Oxide without Its Intake: Implications for COVID-19 and beyond

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1699
Author(s):  
Tomohiro Akiyama ◽  
Takamichi Hirata ◽  
Takahiro Fujimoto ◽  
Shinnosuke Hatakeyama ◽  
Ryuhei Yamazaki ◽  
...  

There are currently no promising therapy strategies for either the treatment or prevention of novel coronavirus disease 2019 (COVID-19), despite the urgent need. In addition to respiratory diseases, vascular complications are rapidly emerging as a key threat of COVID-19. Existing nitric oxide (NO) therapies have been shown to improve the vascular system; however, they have different limitations in terms of safety, usability and availability. In light of this, we hypothesise that a natural-mineral-based novel nanomaterial, which was developed based on NO therapy, might be a viable strategy for the treatment and prevention of COVID-19. The present study examined if it could induce an increase of intravascular NO, vasodilation and the consequent increase of blood flow rate and temperature in a living body. The intravascular NO concentration in the hepatic portal of rats was increased by 0.17 nM over 35.2 s on average after its application. An ultrasonic Doppler flow meter showed significant increases in the blood flow rate and vessel diameter, but no difference in the blood flow velocity. These were corroborated by measurements of human hand surface temperature. To our knowledge, this result is the first evidence where an increase of intravascular NO and vasodilation were induced by bringing a natural-mineral-based nanomaterial into contact with or close to a living body. The precise mechanisms remain a matter for further investigation; however, we may assume that endothelial NO synthase, haemoglobin and endothelium-derived hyperpolarising factor are deeply involved in the increase of intravascular NO.

2014 ◽  
Vol 116 (4) ◽  
pp. 416-424 ◽  
Author(s):  
Ryan E. Tomlinson ◽  
Kooresh I. Shoghi ◽  
Matthew J. Silva

Despite the strong connection between angiogenesis and osteogenesis in skeletal repair conditions such as fracture and distraction osteogenesis, little is known about the vascular requirements for bone formation after repetitive mechanical loading. Here, established protocols of damaging (stress fracture) and nondamaging (physiological) forelimb loading in the adult rat were used to stimulate either woven or lamellar bone formation, respectively. Positron emission tomography was used to evaluate blood flow and fluoride kinetics at the site of bone formation. In the group that received damaging mechanical loading leading to woven bone formation (WBF),15O water (blood) flow rate was significantly increased on day 0 and remained elevated 14 days after loading, whereas18F fluoride uptake peaked 7 days after loading. In the group that received nondamaging mechanical loading leading to lamellar bone formation (LBF),15O water and18F fluoride flow rates in loaded limbs were not significantly different from nonloaded limbs at any time point. The early increase in blood flow rate after WBF loading was associated with local vasodilation. In addition, Nos2 expression in mast cells was increased in WBF-, but not LBF-, loaded limbs. The nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester was used to suppress NO generation, resulting in significant decreases in early blood flow rate and bone formation after WBF loading. These results demonstrate that NO-mediated vasodilation is a key feature of the normal response to stress fracture and precedes woven bone formation. Therefore, patients with impaired vascular function may heal stress fractures more slowly than expected.


HAND ◽  
1983 ◽  
Vol os-15 (1) ◽  
pp. 9-14 ◽  
Author(s):  
M. Naito ◽  
K. Ogata

The blood supply to the central third of the Achilles tendon was studied in adult rabbits using the hydrogen washout technique before and after soft tissue dissection including paratenon. The soft tissue dissection caused a decrease of the blood flow rate in the Achilles tendon by approximately 35 per cent. These results may indicate that the central third of the tendon with a paratenon receives its blood supply from the extrinsic vascular system by approximately 35 per cent and from the intrinsic vascular system by approximately 65 per cent.


1984 ◽  
Vol 4 (1) ◽  
pp. 110-114 ◽  
Author(s):  
Masahiro Kobari ◽  
Fumio Gotoh ◽  
Yasuo Fukuuchi ◽  
Kortaro Tanaka ◽  
Norihiro Suzuki ◽  
...  

The blood flow velocity and diameter of feline pial arteries, ranging in diameter from 20 to 200 μm, were measured simultaneously using a newly developed video camera method under steady-state conditions for all other parameters. There was a linear relationship between blood flow velocity and pial artery diameter ( y = 0.340 x + 0.309), the correlation coefficient being 0.785 (p < 0.001). The average values for blood flow velocity in pial arteries <50 μm, ≧50 but <100 μm, ≧100 but <150 μm, and ≧150 μm in diameter were 12.9 ± 1.3, 24.6 ± 3.4, 42.1 ± 4.7, and 59.9 ± 5.3 mm/s, respectively. Blood flow rate was calculated as a product of the cross-sectional area and the flow velocity. The blood flow rate increased exponentially as the pial artery diameter increased ( y = 2.71 × 10−4 x2.98). The average values for blood flow rate in pial arteries <50 μm, ≧50 but <100 μm, ≧100 but <150 μm, and ≧150 μm in diameter were 12.8 ± 1.5, 122.1 ± 24.8, 510.2 ± 74.8, and 1524.2 ± 174.4 10−3 mm3/s, respectively. Hemorheological parameters such as the wall shear rate and Reynolds' number were also calculated. The data obtained provide a useful basis for further investigations in the field of cerebral circulation.


1989 ◽  
Vol 31 (3) ◽  
pp. 195-199 ◽  
Author(s):  
Bryan M. Pereira ◽  
Philip R. Weinstein ◽  
Enrique Zea-Longa ◽  
Mohammed El-Fiki

1972 ◽  
Vol 50 (8) ◽  
pp. 774-783 ◽  
Author(s):  
Serge Carrière ◽  
Michel Desrosiers ◽  
Jacques Friborg ◽  
Michèle Gagnan Brunette

Furosemide (40 μg/min) was perfused directly into the renal artery of dogs in whom the femoral blood pressure was reduced (80 mm Hg) by aortic clamping above the renal arteries. This maneuver, which does not influence the intrarenal blood flow distribution, produced significant decreases of the urine volume, natriuresis, Ccreat, and CPAH, and prevented the marked diuresis normally produced by furosemide. Therefore the chances that systemic physiological changes occurred, secondary to large fluid movements, were minimized. In those conditions, however, furosemide produced a significant increase of the urine output and sodium excretion in the experimental kidney whereas Ccreat and CPAH were not affected. The outer cortical blood flow rate (ml/100 g-min) was modified neither by aortic constriction (562 ± 68 versus 569 ± 83) nor by the subsequent administration of furosemide (424 ± 70). The blood flow rate of the outer medulla in these three conditions remained unchanged (147 ± 52 versus 171 ± 44 versus 159 ± 54). The initial distribution of the radioactivity in each compartment remained comparable in the three conditions. In parallel with the results from the krypton-85 disappearance curves, the autoradiograms, silicone rubber casts, and EPAH did not suggest any change in the renal blood flow distribution secondary to furosemide administration.


1983 ◽  
Vol 6 (3) ◽  
pp. 127-130 ◽  
Author(s):  
C. Woffindin ◽  
N.A. Hoenich ◽  
D.N.S. Kerr

Data collected during the evaluation of a series of hemodialysers were analysed to see the effect of hematocrit on the clearance of urea and creatinine. All evaluations were performed on patients with a range of hematocrits with a mean close to 20%. The urea clearance of those in the upper half of the distribution curve (mean hematocrit 29.4%) was not significantly different from that of patients in the lower half of the distribution curve (mean hematocrit 16.9%) whether the clearance was studied at high or low blood flow rates and with hollow fibre or flat plate disposable hemodialysers. Likewise, there was no correlation between hematocrit and urea clearance by regression analysis. In contrast, the clearance of creatinine was affected by hematocrit being greater at lower hematocrit values. This difference was independent of blood flow rate and dialyser type and was confirmed by regression analysis.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 75 ◽  
Author(s):  
Aikaterini Mouza ◽  
Olga Skordia ◽  
Ioannis Tzouganatos ◽  
Spiros Paras

The aim of this study was to provide scientists with a straightforward correlation that can be applied to the prediction of the Fanning friction factor and consequently the pressure drop that arises during blood flow in small-caliber vessels. Due to the small diameter of the conduit, the Reynolds numbers are low and thus the flow is laminar. This study has been conducted using Computational Fluid Dynamics (CFD) simulations validated with relevant experimental data, acquired using an appropriate experimental setup. The experiments relate to the pressure drop measurement during the flow of a blood analogue that follows the Casson model, i.e., an aqueous Glycerol solution that contains a small amount of Xanthan gum and exhibits similar behavior to blood, in a smooth, stainless steel microtube (L = 50 mm and D = 400 μm). The interpretation of the resulting numerical data led to the proposal of a simplified model that incorporates the effect of the blood flow rate, the hematocrit value (35–55%) and the vessel diameter (300–1800 μm) and predicts, with better than ±10% accuracy, the Fanning friction factor and consequently the pressure drop during laminar blood flow in healthy small-caliber vessels.


Sign in / Sign up

Export Citation Format

Share Document