scholarly journals Comparing the Degradation Potential of Copper(II), Iron(II), Iron(III) Oxides, and Their Composite Nanoparticles in a Heterogeneous Photo-Fenton System

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 225
Author(s):  
Asfandyar Khan ◽  
Zsolt Valicsek ◽  
Ottó Horváth

Heterogeneous photo-Fenton systems offer efficient solutions for the treatment of wastewaters in the textile industry. This study investigated the fabrication and structural characterization of novel peculiar-shaped CuIIO, FeIII2O3, and FeIIO nanoparticles (NPs) compared to the properties of the iron(II)-doped copper ferrite CuII0.4FeII0.6FeIII2O4. The photocatalytic efficiencies of these NPs and the composite of the simple oxides (CuIIO/FeIIO/FeIII2O3) regarding the degradation of methylene blue (MB) and rhodamine B (RhB) as model dyes were also determined. The catalysts were synthesized via simple co-precipitation and calcination technique. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS) were utilized for structural characterization. The structure of CuIIO was bead-like connected into threads, FeIII2O3 was rod-like, while FeIIO pallet-like, with average crystallite sizes of 18.9, 36.9, and 37.1 nm, respectively. The highest degradation efficiency was achieved by CuIIO for RhB and by CuII0.4FeII0.6FeIII2O4 for MB. The CuIIO/FeIIO/FeIII2O3 composite proved to be the second-best catalyst in both cases, with excellent reusability. Hence, these NPs can be successfully applied as heterogeneous photo-Fenton catalysts for the removal of hazardous pollutants. Moreover, the simple metal oxides and the iron(II)-doped copper ferrite displayed a sufficient antibacterial activity against Gram-negative Vibrio fischeri.

Materials ◽  
2014 ◽  
Vol 7 (2) ◽  
pp. 1384-1408 ◽  
Author(s):  
Udo Kielmann ◽  
Gunnar Jeschke ◽  
Inés García-Rubio

2016 ◽  
Author(s):  
Ganesh Bera ◽  
Sourav Sinha ◽  
P. Rambabu ◽  
P. Das ◽  
A. K. Gupta ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 921 ◽  
Author(s):  
Asfandyar Khan ◽  
Zsolt Valicsek ◽  
Ottó Horváth

The heterogeneous photo-Fenton type system has huge fame in the field of wastewater treatment due to its reusability and appreciable photoactivity within a wide pH range. This research investigates the synthesis and characterization of iron(II) doped copper ferrite (CuII(x)FeII(1-x)FeIII2O4 nanoparticles (NPs) and their photocatalytic applications for the degradation of methylene blue (MB) as a model dye. The NPs were prepared via simple co-precipitation technique and calcination. The NPs were characterized by using Raman spectroscopy, X-ray diffractometry (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS). SEM reveals the structural change from the spherical-like particles into needle-like fine particles as the consequence of the increasing ratio of copper(II) in the ferrites, accompanied by the decrease of the optical band-gap energies from 2.02 to 1.25 eV. The three major determinants of heterogeneous photo-Fenton system, namely NPs concentration, hydrogen peroxide concentration and pH, on the photocatalytic degradation of MB were studied. The reusability of NPs was found to be continuously increasing during 4 cycles. It was concluded that iron(II) doped copper ferrites, due to their favorable band-gap energies and peculiar structures, exhibit a strong potential for photocatalytic-degradation of dyes, for example, MB.


Author(s):  
S. F. Hayes ◽  
M. D. Corwin ◽  
T. G. Schwan ◽  
D. W. Dorward ◽  
W. Burgdorfer

Characterization of Borrelia burgdorferi strains by means of negative staining EM has become an integral part of many studies related to the biology of the Lyme disease organism. However, relying solely upon negative staining to compare new isolates with prototype B31 or other borreliae is often unsatisfactory. To obtain more satisfactory results, we have relied upon a correlative approach encompassing a variety EM techniques, i.e., scanning for topographical features and cryotomy, negative staining and thin sectioning to provide a more complete structural characterization of B. burgdorferi.For characterization, isolates of B. burgdorferi were cultured in BSK II media from which they were removed by low speed centrifugation. The sedimented borrelia were carefully resuspended in stabilizing buffer so as to preserve their features for scanning and negative staining. Alternatively, others were prepared for conventional thin sectioning and for cryotomy using modified procedures. For thin sectioning, the fixative described by Ito, et al.


Sign in / Sign up

Export Citation Format

Share Document