scholarly journals PDMS Sponges with Embedded Carbon Nanotubes as Piezoresistive Sensors for Human Motion Detection

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1740
Author(s):  
Blake Herren ◽  
Vincent Webster ◽  
Eric Davidson ◽  
Mrinal C. Saha ◽  
M. Cengiz Altan ◽  
...  

Porous piezoresistive sensors offer promising flexible sensing functionality, such as human joint motion detection and gesture identification. Herein, a facile fabrication method is developed using a microwave-based rapid porogen removal technique for the manufacturing of porous nanocomposite sponges consisting of polydimethylsiloxane (PDMS) and well-dispersed carbon nanotubes (CNTs). The porogen amounts and CNT loadings are varied to tailor the porosity and electrical properties of the porous sensors. The sponges are characterized by a scanning electron microscope (SEM) to compare their microstructures, validate the high-quality CNT dispersion, and confirm the successful nanofiller embedding within the elastomeric matrix. Sponges with a 3 wt% CNT loading demonstrate the highest piezoresistive sensitivity. Experimental characterization shows that the sponges with low porosity have long durability and minimal strain rate dependence. Additionally, the developed sponges with 3 wt% CNTs are employed for the human motion detection using piezoresistive method. One experiment includes fingertip compression measurements on a prosthetic hand. Moreover, the sensors are attached to the chest, elbow, and knee of a user to detect breathing, running, walking, joint bending, and throwing motions.

2020 ◽  
Vol 12 (17) ◽  
pp. 19874-19881 ◽  
Author(s):  
Shuaitao Yang ◽  
Chengwei Li ◽  
Xiyu Chen ◽  
Yongpeng Zhao ◽  
Hao Zhang ◽  
...  

2019 ◽  
Vol 173 ◽  
pp. 118-124 ◽  
Author(s):  
Huy Mai ◽  
Rahim Mutlu ◽  
Charbel Tawk ◽  
Gursel Alici ◽  
Vitor Sencadas

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1154 ◽  
Author(s):  
Peng Zhang ◽  
Yucheng Chen ◽  
Yuxia Li ◽  
Yao Zhang ◽  
Jian Zhang ◽  
...  

High-performance flexible strain sensors are playing an increasingly important role in wearable electronics, such as human motion detection and health monitoring, with broad application prospects. This study developed a flexible resistance strain sensor with a porous structure composed of carbon black and multi-walled carbon nanotubes. A simple and low-cost spraying method for the surface of a porous polydimethylsiloxane substrate was used to form a layer of synergized conductive networks built by carbon black and multi-walled carbon nanotubes. By combining the advantages of the synergetic effects of mixed carbon black and carbon nanotubes and their porous polydimethylsiloxane structure, the performance of the sensor was improved. The results show that the sensor has a high sensitivity (GF) (up to 61.82), a wide strain range (0%–130%), a good linearity, and a high stability. Based on the excellent performance of the sensor, the flexible strain designed sensor was installed successfully on different joints of the human body, allowing for the monitoring of human movement and human respiratory changes. These results indicate that the sensor has promising potential for applications in human motion monitoring and physiological activity monitoring.


Sign in / Sign up

Export Citation Format

Share Document