scholarly journals Determining the Preferred Orientation of Silver-Plating via X-ray Diffraction Profile

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2417
Author(s):  
Taotao Li ◽  
Liuwei Zheng ◽  
Wanggang Zhang ◽  
Pengfei Zhu

Determining the preferred orientation of plating film is of practical importance. In this work, the Rietveld method and quantitative texture analysis (RM+QTA) are used to analyze the preferred orientation of plating silver film with XRD profile, whose <311> axial texture can be completely described by a set of exponential harmonics index, extracted from a single XRD profile, C41,1(0.609), C61,1(0.278), C81,1(−0.970). The constructed pole figures with the index of the exponential harmonic are following those measured by the multi-axis diffractometer. The method using exponential harmonic index can be extended to characterize the plating by electroplating in a quantitative harmonic description. In addition, a new dimension involving crystallite shape and size is considered in characterizing the preferred orientation.

Author(s):  
X. Li ◽  
J. B. Wiskel ◽  
H. Henein ◽  
D. G. Ivey ◽  
O. Omotoso

The mechanical properties of microalloyed steels used in pipelines are strongly affected by microstructure. In this paper, X-ray diffraction (Rietveld method) was used to quantify the microstructure — specifically domain size, microstrain and preferred orientation — for four X80 steels and three experimental X100 steels. Measurements were made at the surface and at several positions below the surface. Nano-sized domains were obtained for all steels tested. A smaller domain size, higher microstrain and stronger preferred orientation were observed in the X100 samples relative to the X80 steels.


2005 ◽  
Vol 38 (5) ◽  
pp. 757-759 ◽  
Author(s):  
Guangrong Ning ◽  
Roberta L. Flemming

The Rietveld method of crystal structure refinement was an important breakthrough, allowing crystal structural information to be obtained from powder diffraction data. One remaining challenge is to collect Rietveld-quality data for polycrystalline mineralsin situ, using laboratory-based micro X-ray diffraction (µXRD) techniques. Here a new data collection method is presented, called `multiframes', which produces high-quality data, suitable for Rietveld refinement, using the Bruker D8 DISCOVER micro X-ray diffractometer. 91 frames of two-dimensional X-ray diffraction data were collected for powdered NIST SRM 660 LaB6standard material, using a general area-detector diffraction system (GADDS), at intervals of 0.8° 2θ. For each frame, only the central 1° 2θ was integrated and merged to produce a diffraction profile from 17 to 90° 2θ. Rietveld refinement of this data usingTOPAS2gave a unit-cell parameter (ao) and atomic position of boron (x) for LaB6of 4.1549 (1) Å and 0.1991 (9), respectively (Rwp= 4.26,RBragg= 3.21). The corresponding La—B bond length was calculated to be 3.0522 Å. These parameters are in good agreement with the literature values for LaB6. These encouraging results suggest that Rietveld-quality micro X-ray diffraction data can be collected from the Bruker D8 DISCOVER diffractometer, provided that the GADDS detector is stepped in small increments, for each frame only the central 1° 2θ is integrated at constant arc length, and counting time is sufficient to yield adequate intensity (∼10 000 counts).


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1841
Author(s):  
Edgar Pio ◽  
Ariosto Medina ◽  
Carola Martínez ◽  
Felipe Manuel Castro Cerda ◽  
Claudio Aguilar

Four titanium alloys (Ti-Ta, Ti-Ta-Sn, Ti-Ta-Mn, and Ti-Nb-Sn) were synthesized by mechanical alloying (MA) in a planetary mill in different times between 2 h and 100 h. The microstructure characterization was made by X-ray diffraction (XRD), in which the Rietveld method was applied to analyze the diffraction patterns. The study demonstrated that after short milling times between 2 h and 30 h, the fraction of hexagonal close-packed (hcp) phase decreases; at the same time, the formation of body-centered cubic (bcc) and face-centered cubic (fcc) Ti phases are promoted. Additionally, after 30 h of MA, the full transformation of hcp-Ti was observed, and the bcc-Ti to fcc-Ti phase transformation took place until 50 h. The results suggest that the addition of Ta and Sn promotes the fcc-Ti phase formation, obtaining 100% of this phase at 50 h onwards, whereas Nb and Mn show the opposite effect.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 572
Author(s):  
Xue Ying Sun ◽  
Ming Yue He ◽  
Jin Lin Wu

In this paper, the pole figures plotted from X-ray diffraction data are employed to analyze the orientation of hydroxyapatite in ivory and mammoth ivory for the first time. The results present evidence of the lamellar structure and the hydroxyapatite appeared as tabular. A preferred orientation of hydroxyapatite was revealed in terms of the calculated orientation factor and the characteristics found in the pole figures. The c-axes of hydroxyapatite are mainly oriented along the growth direction. Both a-axes are on the left of the angle bisector of Retzius. Approximately 25–30° separates the a-axes and the angle bisector of Retzius in ivory, whereas the figure is approximately 10–15° in mammoth ivory. Our work is significant in providing more accurate knowledge of the shapes and organizational state of bio-mineral crystals and providing insight into crystal formation and development in bio-mineralization.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


2008 ◽  
Vol 39 (8) ◽  
pp. 1978-1984 ◽  
Author(s):  
S. Mahadevan ◽  
T. Jayakumar ◽  
B.P.C. Rao ◽  
Anish Kumar ◽  
K.V. Rajkumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document