scholarly journals Carbon-Based Nanomaterials Increase Reactivity of Primary Monocytes towards Various Bacteria and Modulate Their Differentiation into Macrophages

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2510
Author(s):  
Tereza Svadlakova ◽  
Martina Kolackova ◽  
Radka Vankova ◽  
Rumeysa Karakale ◽  
Andrea Malkova ◽  
...  

The evaluation of carbon-based nanomaterials’ (C-BNMs’) interactions with the immune system, notably their ability to cause inflammation, is a critical step in C-BNM health risk assessment. Particular attention should be given to those C-BNMs that do not cause direct cytotoxicity or inflammation on their own. However, the intracellular presence of these non-biodegradable nanomaterials could dysregulate additional cell functions. This is even more crucial in the case of phagocytes, which are the main mediators of defensive inflammation towards pathogens. Hence, our study was focused on multi-walled carbon nanotubes (MWCNTs) and two different types of graphene platelets (GPs) and whether their intracellular presence modulates a proinflammatory response from human primary monocytes towards common pathogens. Firstly, we confirmed that all tested C-BNMs caused neither direct cytotoxicity nor the release of tumour necrosis factor α (TNF-α), interleukin (IL)-6 or IL-10. However, such pre-exposed monocytes showed increased responsiveness to additional bacterial stimuli. In response to several types of bacteria, monocytes pre-treated with GP1 produced a significantly higher quantity of TNF-α, IL-6 and IL-10. Monocytes pre-treated with MWCNTs produced increased levels of IL-10. All the tested C-BNMs enhanced monocyte phagocytosis and accelerated their differentiation towards macrophages. This study confirms the immunomodulatory potential of C-BNMs.

2018 ◽  
Vol 188 ◽  
pp. 01019 ◽  
Author(s):  
Evangelia K. Karaxi ◽  
Irene A. Kanellopoulou ◽  
Anna Karatza ◽  
Ioannis A. Kartsonakis ◽  
Costas A. Charitidis

Carbon-based nanomaterials are promising reinforcing elements for the development of “smart” self-sensing cementitious composites due to their exceptional mechanical and electrical properties. Significant research efforts have been committed on the synthesis of cement-based composite materials reinforced with carbonaceous nanostructures, covering every aspect of the production process (type of nanomaterial, mixing process, electrode type, measurement methods etc.). In this study, the aim is to develop a well-defined repeatable procedure for the fabrication as well as the evaluation of pressure-sensitive properties of intrinsically self-sensing cementitious composites incorporating carbon- based nanomaterials. Highly functionalized multi-walled carbon nanotubes with increased dispersibility in polar media were used in the development of advanced reinforced mortar specimens which increased their mechanical properties and provided repeatable pressure-sensitive properties.


Author(s):  
Mohsen Ghamari ◽  
Ahmed Aboalhamayie

Recent studies have shown that addition of nano-sized particles to liquid fuels could significantly enhance major combustion characteristics such as burning rate and ignition delay. Colloidal suspensions are known to have enhanced optical properties and thermal conductivity compared to neat liquids; however, in the case of colloidal fuels, the main mechanism responsible for such enhanced properties is not well understood. To better understand these phenomena, colloidal suspensions of jet fuel and different types of carbon-based nanomaterials (carbon nanoparticles, multi-walled carbon nanotubes, and graphene nanoplatelets) prepared at different particle loadings were experimentally tested for their thermal conductivities. Colloidal suspensions of nanotubes showed higher conductivity compared to that of graphene and nanoparticle. This could justify higher burning rate of these fuels. Furthermore, and to differentiate between the effects of thermal conduction and radiation, droplet evaporations tests were carried out on colloidal suspensions of carbon nanoparticle under forced convection and in the absence of any radiation source. It was found that the presence of nanoparticle in jet fuel initially increases evaporation rate. However, a reduction in evaporation rate was observed at higher concentration as a result of particles agglomeration.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1330 ◽  
Author(s):  
Mingfei Pan ◽  
Zongjia Yin ◽  
Kaixin Liu ◽  
Xiaoling Du ◽  
Huilin Liu ◽  
...  

Food safety is one of the most important and widespread research topics worldwide. The development of relevant analytical methods or devices for detection of unsafe factors in foods is necessary to ensure food safety and an important aspect of the studies of food safety. In recent years, developing high-performance sensors used for food safety analysis has made remarkable progress. The combination of carbon-based nanomaterials with excellent properties is a specific type of sensor for enhancing the signal conversion and thus improving detection accuracy and sensitivity, thus reaching unprecedented levels and having good application potential. This review describes the roles and contributions of typical carbon-based nanomaterials, such as mesoporous carbon, single- or multi-walled carbon nanotubes, graphene and carbon quantum dots, in the construction and performance improvement of various chemo- and biosensors for various signals. Additionally, this review focuses on the progress of applications of this type of sensor in food safety inspection, especially for the analysis and detection of all types of toxic and harmful substances in foods.


2020 ◽  
Vol 7 ◽  
Author(s):  
Omid Farshad ◽  
Reza Heidari ◽  
Mohammad Javad Zamiri ◽  
Socorro Retana-Márquez ◽  
Meghdad Khalili ◽  
...  

Carbon-based nanomaterials possess a remarkably high potential for biomedical applications due to their physical properties; however, their detrimental effects on reproduction are also concerned. Several reports indicate the toxicity of carbon nanotubes (CNT); nevertheless, their impact on intracellular organelles in the male reproductive organs has not been fully elucidated. Herein, we report on the reprotoxicity of single-walled (SWCNT) and multi-walled carbon nanotubes (MWCN) on several intracellular events and histological criteria in pubertal male BALB/c mice orally treated with 0, 10, and 50 mg/kg/day doses for 5 weeks. Biomarkers of oxidative stress and mitochondrial functionality, histopathological alterations, and epididymal sperm characteristics were determined. Oral administration of CNTs at 10 and 50 mg/kg evoked a significant decrement in weight coefficient, sperm viability and motility, hypo-osmotic swelling (HOS) test, sperm count, mitochondrial dehydrogenase activity, ATP content, total antioxidant capacity, and GSH/GSSH ratio in the testis and epididymal spermatozoa. On the other hand, percent abnormal sperm, testicular and sperm TBARS contents, protein carbonylation, ROS formation, oxidized glutathione level, and sperm mitochondrial depolarization were considerably increased. Significant histopathological and stereological alterations in the testis occurred in the groups challenged with CNTs. The current findings indicated that oxidative stress and mitochondrial impairment might substantially impact CNTs-induced reproductive system injury and sperm toxicity. The results can also be used to establish environmental standards for CNT consumption by mammals, produce new chemicals for controlling the rodent populations, and develop therapeutic approaches against CNTs-associated reproductive anomalies in the males exposed daily to these nanoparticles.


2014 ◽  
Vol 807 ◽  
pp. 13-39
Author(s):  
Bavani Kasinathan ◽  
Ruzniza Mohd Zawawi

Carbon-based nanomaterials such as graphene, carbon nanotubes, carbon nanofibers and nanodiamonds have been fascinated considerable attention as promising materials for drug sensing. These materials have tremendous amount of attraction due to some extraordinary features such as excellent electrical and thermal conductivities as well as high mechanical strength. Hence, these nanomaterials have been used extensively in sensor technology in order to achieved desired sensitivities. To date, carbon based nanomaterials have been exploit in the development of various drug sensing due to their simple preparation methods, and cost effectiveness. The aim of this review is to focus upon carbon based nanomaterials predominantly on drugs sensing applications. This review has been written in summary form including properties, fabrication method, and analytical performances.Abbreviation:Au, Gold; CNFs, Carbon Nanofibers; CNTs, Carbon Nanotubes; CVD, Chemical Vapour Deposition; D-, Dextrorotatory enantiomer; D, Dimensional; DNase, deoxyribonuclease; ESD, Electrospinning deposition; GCE, Glassy Carbon Electrode; Gr, Graphene; GrO, Graphene Oxide; ILs, ionic liquids; L-, Levorotatory enantiomer; LOD, Limit of Detection; MTase, Methyltransferases; MW, Microwave; MWCNTs, Multi-walled Carbon nanotubes; NDs, Nanodiamonds; NPs, Nanoparticles; PECVD, Plasma Enhanced Chemical Vapour Deposition; RGO, Reduced Graphene Oxide; SPE, Screen-Printed Electrode; SPR, Surface Plasmon resonance; ssDNA, single-stranded DNA; SWCNTs, Single-walled Carbon nanotubes.


2013 ◽  
Vol 3 (1) ◽  
pp. 6 ◽  
Author(s):  
Ted H. Elsasser ◽  
Stanislaw Kahl ◽  
Katie M. Lebold ◽  
Maret G. Traber ◽  
Jessica Shaffer ◽  
...  

While vitamin E has been used for decades in cattle diets, the principle form used traditionally is the synthetic α-isoform acetate or succinate and largely no data exist on the biological partitioning or functionality of the major naturally occurring γ- and δ-isoforms in cattle. Using tyrosine 3’-nitrated protein (pNT) as a biomarker of nitrosative cell stress, we sought to evaluate the effectiveness of short-term feeding supplementation of high content natural α-tocopherol (<em>α-T</em>, 96% α-isomer) compared to high content γ- and δ-enriched low α-content mixed tocopherol oils (<em>γ-T</em>, ~70% <em>γ-</em>, 20% δ-, &lt;5% α-isoform) to mitigate systemic and hepatic aspects of the proinflammatory response to endotoxin (LPS). Calves fed diets supplemented with <em>α-T</em>, <em>γ-T</em> for five days or no tocopherol supplement (<em>T0E</em>) were challenged with a low-level of LPS (0.25 μg/kg, iv, <em>E. coli </em>055:B5) sufficient to effect a liver nitration response. As fed,<em> α-T</em> or <em>γ-T</em> increased plasma and liver content of the respective tocopherols reflecting their relative abundance in the respective diets. Plasma or tissue mediators and biomarkers of the proinflammatory response [plasma concentrations of tumor necrosis factor-α (TNF-α, P&lt;0.001), nitrate+nitrite (NOx, P&lt;0.01), and serum amyloid A (SAA, P&lt;0.001)], and general liver content of pNT (P&lt;0.005) increased after LPS. LPS-mediated increases in TNF-α were not dif- ferent between diet treatments; both plasma NOx (P&lt;0.05) and generalized liver pNT (P&lt;0.03) responses were attenuated significantly in <em>α-T </em>and <em>γ-T versus T0E calves</em>. Plasma SAA was significantly decreased in γ-T calves at 24 h post-LPS relative to responses in <em>α-T</em> or <em>T0E </em>calves. The nitration of the mitochondrial proteins 24 h post-LPS was not only attenuated in <em>α-T</em> and <em>γ-T vs T0E</em>, but also the mitigating effect of <em>γ-T</em> on these specific nitration events was greater than that of <em>α-T </em>(P&lt;0.01). Results are consistent with the concept that short-term <em>α-T</em> or <em>γ-T</em> supplementation can effectively decrease proinflammatory liver pNT after LPS; some mitochondrial nitration targets may be better protected with prophylactic supplementation with γ-,δ-tocopherol enriched oil.


2015 ◽  
Vol 1725 ◽  
Author(s):  
Bansi D. Malhotra ◽  
Saurabh Srivastava ◽  
Shine Augustine

ABSTRACTThere is increased interest towards the application of carbon based nanomaterials to biosensors since these can be used to quickly detect presence of the toxins in food, agricultural and environmental systems. The accurate, faster and early detection of food toxins is presently very important for ensuring safety and shelf life of agricultural commodities resulting from food contamination. The carbon materials (CNTs) and recently discovered graphene have been predicted to be promising candidates in the development of electrochemical biosensor owing to their exceptionally large surface area and interesting electrochemical properties. We focus on some of the recent results obtained in our laboratories pertaining to the development of biosensors based on multi-walled carbon nanotubes and graphene for mycotoxin(aflatoxin ) detection.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 214
Author(s):  
Bertrand Jóźwiak ◽  
Justyna Dziadosz ◽  
Adrian Golba ◽  
Krzysztof Cwynar ◽  
Grzegorz Dzido ◽  
...  

The concept of IoNanofluids (INFs) as the stable dispersions of nanoparticles in ionic liquids was proposed in 2009 by Nieto de Castro’s group. INFs characterize exciting properties such as improved thermal conductivity, non-volatility, and non-flammability. This work is a continuation of our studies on the morphology and physicochemistry of carbon-based nanomaterials affecting thermal conductivity, viscosity, and density of INFs. We focus on the characterization of dispersions composed of long carboxylic group-functionalized multi-walled carbon nanotubes and 1-ethyl-3-methylimidazolium thiocyanate. The thermal conductivity of INFs was measured using KD2 Pro Thermal Properties Analyzer (Decagon Devices Inc., Pullman, WA, USA). The viscosity was investigated using rotary viscometer LV DV-II+Pro (Brookfield Engineering, Middleboro, MA, USA). The density of INFs was measured using a vibrating tube densimeter Anton Paar DMA 5000 (Graz, Austria). The maximum thermal conductivity enhancement of 22% was observed for INF composed of 1 wt% long carboxylic group-functionalized multi-walled carbon nanotubes.


2010 ◽  
Vol 7 (1) ◽  
pp. 10 ◽  
Author(s):  
Kai Loon Chen ◽  
Billy A. Smith ◽  
William P. Ball ◽  
D. Howard Fairbrother

Environmental context. The fate and bioavailability of engineered nanoparticles in natural aquatic systems are strongly influenced by their ability to remain dispersed in water. Consequently, understanding the colloidal properties of engineered nanoparticles through rigorous characterisation of physicochemical properties and measurements of particle stability will allow for a more accurate prediction of their environmental, health, and safety effects in aquatic systems. This review highlights some important techniques suitable for the assessment of the colloidal properties of engineered nanoparticles and discusses some recent findings obtained by using these techniques on two popular carbon-based nanoparticles, fullerene C60 and multi-walled carbon nanotubes. Abstract. The colloidal properties of engineered nanoparticles directly affect their use in a wide variety of applications and also control their environmental fate and mobility. The colloidal stability of engineered nanoparticles depends on their physicochemical properties within the given aqueous medium and is ultimately reflected in the particles’ aggregation and deposition behaviour. This review presents some of the key experimental methods that are currently used to probe colloidal properties and quantify engineered nanoparticle stability in water. Case studies from fullerene C60 nanoparticles and multi-walled carbon nanotubes illustrate how the characterisation and measurement methods are used to understand and predict nanoparticle fate in aquatic systems. Consideration of the comparisons between these two classes of carbon-based nanoparticles provides useful insights into some major current knowledge gaps while also revealing clues about needed future developments. Key issues to be resolved relate to the nature of near-range surface forces and the origins of surface charge, particularly for the reportedly unmodified or ‘pure’ carbon-based nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document