scholarly journals Ultraflexible Liposome Nanocargo as a Dermal and Transdermal Drug Delivery System

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2557
Author(s):  
Kalvatala Sudhakar ◽  
Shivkanya Fuloria ◽  
Vetriselvan Subramaniyan ◽  
Kathiresan V. Sathasivam ◽  
Abul Kalam Azad ◽  
...  

A selected active pharmaceutical ingredient must be incorporated into a cargo carrier in a particular manner so that it achieves its goal. An amalgamation of active pharmaceutical ingredients (APIs) should be conducted in such a manner that it is simple, professional, and more beneficial. Lipids/polymers that are known to be used in nanocarriers for APIs can be transformed into a vesicular formulation, which offers elegant solutions to many problems. Phospholipids with other ingredients, such as ethanol and water, form suitable vesicular carriers for many drugs, overcoming many problems related to poor bioavailability, poor solubility, etc. Ultraflexible liposomes are novel carriers and new frontiers of drug delivery for transdermal systems. Auxiliary advances in vesicular carrier research have been made, enabling polymer-coated ethanolic liposomes to avoid detection by the body’s immune system—specifically, the cells of the reticuloendothelial system. Ultraflexible liposomes act as a cargo system and a nanotherapeutic approach for the transport of therapeutic drugs and bioactive agents. Various applications of liposome derivatives in different diseases are emphasized in this review.

2021 ◽  
Vol 22 (18) ◽  
pp. 9743
Author(s):  
Eliana B. Souto ◽  
Ana S. Macedo ◽  
João Dias-Ferreira ◽  
Amanda Cano ◽  
Aleksandra Zielińska ◽  
...  

Administration of active pharmaceutical ingredients (APIs) through the skin, by means of topical drug delivery systems, is an advanced therapeutic approach. As the skin is the largest organ of the human body, primarily acting as a natural protective barrier against permeation of xenobiotics, specific strategies to overcome this barrier are needed. Liposomes are nanometric-sized delivery systems composed of phospholipids, which are key components of cell membranes, making liposomes well tolerated and devoid of toxicity. As their lipid compositions are similar to those of the skin, liposomes are used as topical, dermal, and transdermal delivery systems. However, permeation of the first generation of liposomes through the skin posed some limitations; thus, a second generation of liposomes has emerged, overcoming permeability problems. Various mechanisms of permeation/penetration of elastic/ultra-deformable liposomes into the skin have been proposed; however, debate continues on their extent/mechanisms of permeation/penetration. In vivo bioavailability of an API administered in the form of ultra-deformable liposomes is similar to the bioavailability achieved when the same API is administered in the form of a solution by subcutaneous or epi-cutaneous injection, which demonstrates their applicability in transdermal drug delivery.


2012 ◽  
Vol 2 (2) ◽  
pp. 164-171 ◽  
Author(s):  
Ishan Ghai ◽  
Hema Chaudhary ◽  
Shashank Ghai ◽  
Kanchan Kohli ◽  
Vikash Kr

Author(s):  
Asif Eqbal ◽  
Vaseem Ahamad Ansari ◽  
Abdul Hafeez ◽  
Farogh Ahsan ◽  
Mohd Imran ◽  
...  

Nanoemulsions are drug transporters for the delivery of therapeutic agents. They possess the small droplet size having the range of 20×10-9-200×10-9m. The main purpose of using Nanoemulsion is to enhance the drug bio- availability of transdermal drug delivery system. With the help of phase diagram, we can select the components of nanoemulsion depending upon formulas ratio of oil phase, surfactant/co-surfactant and water phase. Nanoemulsion directly used as a topical drug delivery in skin organs. The most useable pharmaceutical application has been developed till date to provide systemic effects to penetrating the full thickness of skin organ layer nanoemulsions can be administered through variety of routes such as percutaneous, perioral, topical, transdermal, ocular and parental administration of medicaments. Nanoemulsions are transparent and slightly opalescent. Nanoemulsion can be prepared through various methods. Nanoemulsions are transparent and slightly opalescent. Factor affecting nanoemulsions are surfactant, viscosity, lipophilic, drug content, pH, concentration of each component, and methodology of formulation. It is unfeasible to test all factors at the various levels. Design of formulation when it comes to experimental design it gives an excellent approach through reducing the time and money.


2021 ◽  
pp. 37-54
Author(s):  
Roman Petrovich Terekhov ◽  
Denis Igorevich Pankov ◽  
Ekaterina Aleksandrovna Anfinogenova ◽  
Irina Anatolievna Selivanova

Рolymorphism is receiving increasing attention due to its influence on the physicochemical and pharmacological properties of the active pharmaceutical ingredients (API) while maintaining the molecular structure. This review is devoted to the problem of APIs phase state control both at the development stage and during the circulation of the drug. The term «polymorphism» has different definitions depending on the branch of science. There is no unambiguous solution to this issue in the regulatory documentation of pharmaceutical industry either. Based on the analysis of literary sources, the article presents a comparison of pharmacopeia methods, recommended in Russian and foreign regulatory documents for the analysis of polymorphism of medicinal substances, including state pharmacopeias of Russia, Belarus, Kazakhstan, the USA, and Japan, as well as international pharmacopeias of the European Economic Union and the Eurasian Economic Union. The trend on using a complex of high-tech equipment is revealed. A systematic approach to analysis based on X-ray diffraction, thermal, spectral, microscopic, biological, and physical methods for determining constants makes it possible not only to identify the polymorphic modification of API, but also to characterize its structure, morphology, physicochemical properties and pharmacological activity. In the Russian Federation, the phenomenon of polymorphism is being studied especially intensively, and some control methods, such as biological methods, are validated only in Russian pharmacopeia. A promising direction for further research is the improvement and harmonization of regulatory documentation within the framework of this chemical and technological field of pharmacy. A global approach will help to reduce not only the probability of poor-quality products entering the market, but also the costs of establishing the authenticity of the active pharmaceutical ingredient produced.


Sign in / Sign up

Export Citation Format

Share Document