scholarly journals Enhancement of Temperature Fluorescence Brightness of Zn@Si Core-Shell Quantum Dots Produced via a Unified Strategy

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3158
Author(s):  
Mohammad S. Almomani ◽  
Naser M. Ahmed ◽  
Marzaini Rashid ◽  
M. K. M. Ali ◽  
H. Akhdar ◽  
...  

Despite many dedicated efforts, the fabrication of high-quality ZnO-incorporated Zinc@Silicon (Zn@Si) core–shell quantum dots (ZnSiQDs) with customized properties remains challenging. In this study, we report a new record for the brightness enhancement of ZnSiQDs prepared via a unified top-down and bottom-up strategy. The top-down approach was used to produce ZnSiQDs with uniform sizes and shapes, followed by the bottom-up method for their re-growth. The influence of various NH4OH contents (15 to 25 µL) on the morphology and optical characteristics of ZnSiQDs was investigated. The ZnSiQDs were obtained from the electrochemically etched porous Si (PSi) with Zn inclusion (ZnPSi), followed by the electropolishing and sonication in acetone. EFTEM micrographs of the samples prepared without and with NH4OH revealed the existence of spherical ZnSiQDs with a mean diameter of 1.22 to 7.4 nm, respectively. The emission spectra of the ZnSiQDs (excited by 365 nm) exhibited bright blue, green, orange-yellow, and red luminescence, indicating the uniform morphology related to the strong quantum confinement ZnSiQDs. In addition, the absorption and emission of the ZnSiQDs prepared with NH4OH were enhanced by 198.8% and 132.6%, respectively. The bandgap of the ZnSiQDs conditioned without and with NH4OH was approximately 3.6 and 2.3 eV, respectively.

2020 ◽  
Vol MA2020-01 (6) ◽  
pp. 648-648
Author(s):  
Anton V Naumov ◽  
Md Tanvir Hasan ◽  
Elizabeth Campbell ◽  
Ching-Wei Lin ◽  
Angela M. Belcher

2020 ◽  
Vol 10 (18) ◽  
pp. 6282
Author(s):  
Muhammad Safwan Zaini ◽  
Josephine Ying Chyi Liew ◽  
Shahrul Ainliah Alang Ahmad ◽  
Abdul Rahman Mohmad ◽  
Mazliana Ahmad Kamarudin

The quantum confinement effect and photoenhancement of photoluminescence (PL) of lead sulphide (PbS) quantum dots (QDs) and lead sulphide/manganese sulphide (PbS/MnS) core shell QDs capped with thiol ligands in aqueous solution were investigated. From PL results, the presence of MnS shells gives a strong confinement effect which translates to higher emission energy in PbS/MnS core shell QDs. Increasing MnS shell thickness from 0.3 to 1.5 monolayers (ML) causes a blueshift of PL peak energies as the charge carriers concentrated in the PbS core region. Enhancement of the PL intensity of colloidal PbS and PbS/MnS core shell QDs has been observed when the samples are illuminated above the band gap energy, under continuous irradiation for 40 min. Luminescence from PbS QDs and PbS/MnS core shell QDs can be strongly influenced by the interaction of water molecules and oxygen present in aqueous solution adsorbed on the QD surface. However, PbS/MnS core shell QDs with a shell thickness of 1.5 ML did not show a PL peak energy stability as it was redshifted after 25 min, probably due to wider size distribution of the QDs.


2007 ◽  
Vol 7 (2) ◽  
pp. 542-548 ◽  
Author(s):  
Cuikun Lin ◽  
Bo Zhao ◽  
Zhenling Wang ◽  
Min Yu ◽  
Huan Wang ◽  
...  

Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol–gel method, resulting in the formation of core–shell structured SiO2 @ GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core–shell structured materials. Both XRD and FT-IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2 @ GdPO4 : Eu3+ phosphors show orange-red luminescence with Eu3+ 5D0–7F1 (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2 @ GdPO4 : Eu3+ phosphors. The obtained core–shell phosphors have potential applications in FED and PDP devices.


2017 ◽  
Vol 255 (5) ◽  
pp. 1700445 ◽  
Author(s):  
Pierre-Marie Coulon ◽  
Gunnar Kusch ◽  
Emmanuel D. Le Boulbar ◽  
Pierre Chausse ◽  
Christopher Bryce ◽  
...  
Keyword(s):  
Top Down ◽  
Deep Uv ◽  

2020 ◽  
Vol 8 (2) ◽  
pp. 485-502 ◽  
Author(s):  
Teng Wang ◽  
Chunyang Nie ◽  
Zhimin Ao ◽  
Shaobin Wang ◽  
Taicheng An

Graphitic-C3N4 quantum dots (g-C3N4QDs), which can be prepared by top-down and bottom-up synthesis, exhibit excellent optical features. They can act as different roles during the photo(electro)catalytic removal of organic pollutants.


2007 ◽  
Vol 7 (2) ◽  
pp. 542-548
Author(s):  
Cuikun Lin ◽  
Bo Zhao ◽  
Zhenling Wang ◽  
Min Yu ◽  
Huan Wang ◽  
...  

Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol–gel method, resulting in the formation of core–shell structured SiO2 @ GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core–shell structured materials. Both XRD and FT-IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2 @ GdPO4 : Eu3+ phosphors show orange-red luminescence with Eu3+ 5D0–7F1 (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2 @ GdPO4 : Eu3+ phosphors. The obtained core–shell phosphors have potential applications in FED and PDP devices.


Sign in / Sign up

Export Citation Format

Share Document