scholarly journals Armchair Janus MoSSe Nanoribbon with Spontaneous Curling: A First-Principles Study

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3442
Author(s):  
Naizhang Sun ◽  
Mingchao Wang ◽  
Ruge Quhe ◽  
Yumin Liu ◽  
Wenjun Liu ◽  
...  

Based on density functional theory, we theoretically investigate the electronic structures of free-standing armchair Janus MoSSe nanoribbons (A-MoSSeNR) with width up to 25.5 nm. The equilibrium structures of nanoribbons with spontaneous curling are obtained by energy minimization in molecular dynamics (MD). The curvature is 0.178 nm−1 regardless of nanoribbon width. Both finite element method and analytical solution based on continuum theory provide qualitatively consistent results for the curling behavior, reflecting that relaxation of intrinsic strain induced by the atomic asymmetry acts as the driving force. The non-edge bandgap of curled A-MoSSeNR reduces faster with the increase of width compared with planar nanoribbons. It can be observed that the real-space wave function at the non-edge VBM is localized in the central region of the curled nanoribbon. When the curvature is larger than 1.0 nm−1, both edge bandgap and non-edge bandgap shrink with the further increase of curvature. Moreover, we explore the spontaneous curling and consequent sewing process of nanoribbon to form nanotube (Z-MoSSeNT) by MD simulations. The spontaneously formed Z-MoSSeNT with 5.6 nm radius possesses the lowest energy. When radius is smaller than 0.9 nm, the bandgap of Z-MoSSeNT drops rapidly as the radius decreases. We expect the theoretical results can help build the foundation for novel nanoscale devices based on Janus TMD nanoribbons.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Lütgert ◽  
J. Vorberger ◽  
N. J. Hartley ◽  
K. Voigt ◽  
M. Rödel ◽  
...  

AbstractWe present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, $$({\hbox {C}}_{10} {\hbox {H}}_8 {\hbox {O}}_4)_n$$ ( C 10 H 8 O 4 ) n , also called mylar) shock-compressed to ($$155 \pm 20$$ 155 ± 20 ) GPa and ($$6000 \pm 1000$$ 6000 ± 1000 ) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1306
Author(s):  
Francesco Ferrante ◽  
Antonio Prestianni ◽  
Marco Bertini ◽  
Dario Duca

Molecular dynamics simulations based on density functional theory were employed to investigate the fate of a hydrogen molecule shot with different kinetic energy toward a hydrogenated palladium cluster anchored on the vacant site of a defective graphene sheet. Hits resulting in H2 adsorption occur until the cluster is fully saturated. The influence of H content over Pd with respect to atomic hydrogen spillover onto graphene was investigated. Calculated energy barriers of ca. 1.6 eV for H-spillover suggest that the investigated Pd/graphene system is a good candidate for hydrogen storage.


2016 ◽  
Vol 200 ◽  
pp. 87-95 ◽  
Author(s):  
Wenhui Mi ◽  
Xuecheng Shao ◽  
Chuanxun Su ◽  
Yuanyuan Zhou ◽  
Shoutao Zhang ◽  
...  

2011 ◽  
Vol 311-313 ◽  
pp. 526-529
Author(s):  
Cai Juan Xia ◽  
Han Chen Liu ◽  
Ji Xin Yin

Using non-equilibrium Green’s function formalism combined with first-principles density functional theory, we investigate the electronic transport properties of a triangle terarylene(open- and closed-ring forms) optical molecular switch. The influence of the HOMO-LUMO gaps and the spatial distributions of molecular orbitals on the quantum transport through the molecular device is discussed. Theoretical results show that the conductance of the closed-ring is 3-8 times larger than that of open-ring, which expect that this system can be one of good candidates for optical switches due to this unique advantage, and may have some potential applications in future molecular circuit.


2021 ◽  
Author(s):  
Tianli Han ◽  
Xirong Lin ◽  
Junfei Cai ◽  
Jinjin Li ◽  
Yajun Zhu ◽  
...  

Abstract Metal-organic-foams (MOFs)-derived nanostructures have received broad attention for secondary batteries. However, common strategies are focusing on the preparation of dispersive materials, which need complicated steps and some additives for making electrodes of batteries. Here, we develop a novel free-standing Co9S8 polyhedron array derived from ZIF-67, which grows on a three-dimensional carbon cloth for lithium-sulfur (Li-S) battery. The polar Co9S8 provides strong chemical binding to immobilize polysulfides, which enables efficiently suppressing of the shuttle effect. The free-standing S@Co9S8 polyhedron array-based cathode exhibits ultrahigh capacity of 1079 mAh g-1 after cycling 100 times at 0.1C, and long cycling life of 500 cycles at 1C, recoverable rate-performance and good temperature tolerance. Furthermore, the adsorption energies towards polysulfides are investigated by using density functional theory (DFT) calculations, which display a strong binding with polysulfides.


2019 ◽  
Vol 4 (4) ◽  
pp. 84 ◽  
Author(s):  
Alexander Moskvin

We present an overview of the microscopic theory of the Dzyaloshinskii–Moriya (DM) coupling in strongly correlated 3d compounds. Most attention in the paper centers around the derivation of the Dzyaloshinskii vector, its value, orientation, and sense (sign) under different types of the (super)exchange interaction and crystal field. We consider both the Moriya mechanism of the antisymmetric interaction and novel contributions, in particular, that of spin–orbital coupling on the intermediate ligand ions. We have predicted a novel magnetic phenomenon, weak ferrimagnetism in mixed weak ferromagnets with competing signs of Dzyaloshinskii vectors. We revisit a problem of the DM coupling for a single bond in cuprates specifying the local spin–orbital contributions to the Dzyaloshinskii vector focusing on the oxygen term. We predict a novel puzzling effect of the on-site staggered spin polarization to be a result of the on-site spin–orbital coupling and the cation-ligand spin density transfer. The intermediate ligand nuclear magnetic resonance (NMR) measurements are shown to be an effective tool to inspect the effects of the DM coupling in an external magnetic field. We predict the effect of a strong oxygen-weak antiferromagnetism in edge-shared CuO 2 chains due to uncompensated oxygen Dzyaloshinskii vectors. We revisit the effects of symmetric spin anisotropy directly induced by the DM coupling. A critical analysis will be given of different approaches to exchange-relativistic coupling based on the cluster and the DFT (density functional theory) based calculations. Theoretical results are applied to different classes of 3d compounds from conventional weak ferromagnets ( α -Fe 2 O 3 , FeBO 3 , FeF 3 , RFeO 3 , RCrO 3 , ...) to unconventional systems such as weak ferrimagnets (e.g., RFe 1 - x Cr x O 3 ), helimagnets (e.g., CsCuCl 3 ), and parent cuprates (La 2 CuO 4 , ...).


Sign in / Sign up

Export Citation Format

Share Document