scholarly journals Comparison of Metal-Based Nanoparticles and Nanowires: Solubility, Reactivity, Bioavailability and Cellular Toxicity

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 147
Author(s):  
Johanna Wall ◽  
Didem Ag Seleci ◽  
Feranika Schworm ◽  
Ronja Neuberger ◽  
Martin Link ◽  
...  

While the toxicity of metal-based nanoparticles (NP) has been investigated in an increasing number of studies, little is known about metal-based fibrous materials, so-called nanowires (NWs). Within the present study, the physico-chemical properties of particulate and fibrous nanomaterials based on Cu, CuO, Ni, and Ag as well as TiO2 and CeO2 NP were characterized and compared with respect to abiotic metal ion release in different physiologically relevant media as well as acellular reactivity. While none of the materials was soluble at neutral pH in artificial alveolar fluid (AAF), Cu, CuO, and Ni-based materials displayed distinct dissolution under the acidic conditions found in artificial lysosomal fluids (ALF and PSF). Subsequently, four different cell lines were applied to compare cytotoxicity as well as intracellular metal ion release in the cytoplasm and nucleus. Both cytotoxicity and bioavailability reflected the acellular dissolution rates in physiological lysosomal media (pH 4.5); only Ag-based materials showed no or very low acellular solubility, but pronounced intracellular bioavailability and cytotoxicity, leading to particularly high concentrations in the nucleus. In conclusion, in spite of some quantitative differences, the intracellular bioavailability as well as toxicity is mostly driven by the respective metal and is less modulated by the shape of the respective NP or NW.

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 857
Author(s):  
Lasni Samalka Kumarasinghe ◽  
Neethu Ninan ◽  
Panthihage Ruvini Lakshika Dabare ◽  
Alex Cavallaro ◽  
Esma J. Doğramacı ◽  
...  

The metal ion release characteristics and biocompatibility of meta-based materials are key factors that influence their use in orthodontics. Although stainless steel-based alloys have gained much interest and use due to their mechanical properties and cost, they are prone to localised attack after prolonged exposure to the hostile oral environment. Metal ions may induce cellular toxicity at high dosages. To circumvent these issues, orthodontic brackets were coated with a functional nano-thin layer of plasma polymer and further immobilised with enantiomers of tryptophan. Analysis of the physicochemical properties confirmed the presence of functional coatings on the surface of the brackets. The quantification of metal ion release using mass spectrometry proved that plasma functionalisation could minimise metal ion release from orthodontic brackets. Furthermore, the biocompatibility of the brackets has been improved after functionalisation. These findings demonstrate that plasma polymer facilitated surface functionalisation of orthodontic brackets is a promising approach to reducing metal toxicity without impacting their bulk properties.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 760
Author(s):  
Maria Chiara Sportelli ◽  
Antonio Ancona ◽  
Annalisa Volpe ◽  
Caterina Gaudiuso ◽  
Valentina Lavicita ◽  
...  

Designing bioactive materials, with controlled metal ion release, exerting a significant biological action and associated to low toxicity for humans, is nowadays one of the most important challenges for our community. The most looked-for nanoantimicrobials are capable of releasing metal species with defined kinetic profiles, either by slowing down or inhibiting bacterial growth and pathogenic microorganism diffusion. In this study, laser ablation synthesis in solution (LASiS) has been used to produce bioactive Ag-based nanocolloids, in isopropyl alcohol, which can be used as water-insoluble nano-reservoirs in composite materials like poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Infrared spectroscopy was used to evaluate the chemical state of pristine polymer and final composite material, thus providing useful information about synthesis processes, as well as storage and processing conditions. Transmission electron microscopy was exploited to study the morphology of nano-colloids, along with UV-Vis for bulk chemical characterization, highlighting the presence of spheroidal particles with average diameter around 12 nm. Electro-thermal atomic absorption spectroscopy was used to investigate metal ion release from Ag-modified products, showing a maximum release around 60 ppb, which ensures an efficient antimicrobial activity, being much lower than what recommended by health institutions. Analytical spectroscopy results were matched with bioactivity tests carried out on target microorganisms of food spoilage.


2020 ◽  
Vol 7 (5) ◽  
pp. 2070027
Author(s):  
Shanoob Balachandran ◽  
Zita Zachariah ◽  
Alfons Fischer ◽  
David Mayweg ◽  
Markus A. Wimmer ◽  
...  

Biomaterials ◽  
2005 ◽  
Vol 26 (11) ◽  
pp. 1219-1229 ◽  
Author(s):  
Silvia Spriano ◽  
Michela Bosetti ◽  
Marco Bronzoni ◽  
Enrica Vernè ◽  
Giovanni Maina ◽  
...  

Minerals ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 203 ◽  
Author(s):  
Shiming Cao ◽  
Yijun Cao ◽  
Zilong Ma ◽  
Yinfei Liao

2015 ◽  
Vol 54 (44) ◽  
pp. 13027-13031 ◽  
Author(s):  
Prem N. Basa ◽  
Sagar Antala ◽  
Robert E. Dempski ◽  
Shawn C. Burdette

2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Mathew T. Mathew ◽  
Thymur Chaudhary ◽  
Michael Jacobs ◽  
Divya Bijukumar ◽  
Markus A. Wimmer ◽  
...  

2015 ◽  
Vol 114 (4) ◽  
pp. 602-608 ◽  
Author(s):  
Maria Claudia Lucchetti ◽  
Giovanni Fratto ◽  
Federica Valeriani ◽  
Elisabetta De Vittori ◽  
Saverio Giampaoli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document