scholarly journals Low Cost Fabrication of Si NWs/CuI Heterostructures

Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 569 ◽  
Author(s):  
Maria Lo Faro ◽  
Antonio Leonardi ◽  
Dario Morganti ◽  
Barbara Fazio ◽  
Ciro Vasi ◽  
...  

In this paper, we present the realization by a low cost approach compatible with silicon technology of new nanostructures, characterized by the presence of different materials, such as copper iodide (CuI) and silicon nanowires (Si NWs). Silicon is the principal material of the microelectronics field for its low cost, easy manufacturing and market stability. In particular, Si NWs emerged in the literature as the key materials for modern nanodevices. Copper iodide is a direct wide bandgap p-type semiconductor used for several applications as a transparent hole conducting layers for dye-sensitized solar cells, light emitting diodes and for environmental purification. We demonstrated the preparation of a solid system in which Si NWs are embedded in CuI material and the structural, electrical and optical characterization is presented. These new combined Si NWs/CuI systems have strong potentiality to obtain new nanostructures characterized by different doping, that is strategic for the possibility to realize p-n junction device. Moreover, the combination of these different materials opens the route to obtain multifunction devices characterized by promising absorption, light emission, and electrical conduction.

2017 ◽  
Vol 4 (7) ◽  
pp. 1187-1191 ◽  
Author(s):  
Xiang-Wei Guo ◽  
Xiao-Hong Li ◽  
Zhu-Jun Liu ◽  
Wei-Lin Chen ◽  
Xiao-Tao Zheng ◽  
...  

α2-K8P2W17O61(Co2+·OH2)·16H2O(P2W17Co) and α2-K7P2W17O61(Mn3+·OH2)·12H2O(P2W17Mn) are employed to construct a new inorganic co-sensitizer.


1991 ◽  
Vol 256 ◽  
Author(s):  
Nader M. Kalkhoran ◽  
F. Namavar ◽  
H. P. Maruska

ABSTRACTWe report the first demonstration of visible light emission from an all solid-state n-p heterojunction diode based on porous silicon. The p-type silicon was electrochemically etched in a hydrofluoric acid solution to form a porous silicon region; the n-p heterojunction diode was fabricated by depositing a wide bandgap n-type semiconductor, indium-tin-oxide (ITO), onto the surface of the porous silicon. With positive bias applied, electroluminescence was observed with a relatively narrow peak at about 580 nm. The device showed strong rectifying properties and no light emission was observed under reverse bias condition. Photoluminescence in the red, orange, yellow, and green was also observed in separate sample preparations.


2020 ◽  
pp. 16-21
Author(s):  
PHITCHAPHORN KHAMMEE ◽  
YUWALEE UNPAPROM ◽  
UBONWAN SUBHASAEN ◽  
RAMESHPRABU RAMARAJ

Recently, dye-sensitized solar cells (DSSC) have concerned significant attention attributable to their material preparation process, architectural and environmental compatibility, also low cost and effective photoelectric conversion efficiency. Therefore, this study aimed to use potential plant materials for DSSC. This research presents the extraction of natural pigments from yellow cotton flowers (Cochlospermum regium). In addition, the natural pigments were revealed that outstanding advantages, including a wide absorption range (visible light), easy extraction method, safe, innocuous pigments, inexpensive, complete biodegradation and ecofriendly. Methanol was used as a solvent extraction for the yellow cotton flower. The chlorophylls and carotenoid pigments extractions were estimated by a UV-visible spectrometer. The chlorophyll-a, chlorophyll-b, and carotenoid yield were 0.719±0.061 µg/ml, 1.484±0.107 µg/ml and 7.743±0.141 µg/ml, respectively. Thus, this study results suggested that yellow cotton flowers containing reasonable amounts appealable in the DSSC production.


Nanoscale ◽  
2014 ◽  
Vol 6 (23) ◽  
pp. 14433-14440 ◽  
Author(s):  
Sheng-qi Guo ◽  
Tian-zeng Jing ◽  
Xiao Zhang ◽  
Xiao-bing Yang ◽  
Zhi-hao Yuan ◽  
...  

In this work, we report the synthesis of mesoporous Bi2S3 nanorods under hydrothermal conditions without additives, and investigated their catalytic activities as the CE in DSCs by I–V curves and tested conversion efficiency.


2021 ◽  
Vol 45 (5) ◽  
pp. 2470-2477
Author(s):  
P. Golvari ◽  
E. Nouri ◽  
N. Mohsenzadegan ◽  
M. R. Mohammadi ◽  
S. O. Martinez-Chapa

Cost-effective DSCs with superior electronic properties are gained by a reduction in electronic trap states and outstanding light scattering and harvesting.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Yuancheng Qin ◽  
Qiang Peng

Dye-sensitized solar cells (DSSCs) have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.


Sign in / Sign up

Export Citation Format

Share Document