scholarly journals Flexible Perovskite Solar Cells via Surface-Confined Silver Nanoparticles on Transparent Polyimide Substrates

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 427 ◽  
Author(s):  
Xiangfu Liu ◽  
Lin Hu ◽  
Rongwen Wang ◽  
Junli Li ◽  
Honggang Gu ◽  
...  

We report about a flexible substrate incorporating surface-confined silver nanoparticles on transparent polyimide (PI). The incorporated silver nanoparticles (Ag NPs), which possessed excellent adhesive strength with the PI substrate, induced localized surface plasmon resonance and light scattering effects by changing the particle size and interparticle distance to promote light harvesting in the perovskite solar cells. Moreover, the reduced sheet resistance was beneficial for the charge extraction and transportation in the devices when high-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS, PH1000) was deposited on the Ag NP-confined PI serving as a flexible bottom electrode. A power conversion efficiency of 10.41% was obtained for the flexible perovskite solar cells based on a Ag NP-confined PI substrate (the particle size of the Ag NPs was 25 nm mixed with 40 nm), which was obviously enhanced in all parameters. Especially, a 61% improvement existed in the short-circuit current density compared to that based on the bare PI substrates. It indicates that the substrate would be a promising candidate for the development of flexible electronics.

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1471 ◽  
Author(s):  
Lung-Chien Chen ◽  
Ching-Ho Tien ◽  
Kuan-Lin Lee ◽  
Yu-Ting Kao

We demonstrate a method to enhance the power conversion efficiency (PCE) of MAPbI3 perovskite solar cells through localized surface plasmon (LSP) coupling with gold nanoparticles:CsPbBr3 hybrid perovskite quantum dots (AuNPs:QD-CsPbBr3). The plasmonic AuNPs:QD-CsPbBr3 possess the features of high light-harvesting capacity and fast charge transfer through the LSP resonance effect, thus improving the short-circuit current density and the fill factor. Compared to the original device without Au NPs, a 27.8% enhancement in PCE of plasmonic AuNPs:QD-CsPbBr3/MAPbI3 perovskite solar cells was achieved upon 120 μL Au NP solution doping. This improvement can be attributed to the formation of surface plasmon resonance and light scattering effects in Au NPs embedded in QD-CsPbBr3, resulting in improved light absorption due to plasmonic nanoparticles.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1626 ◽  
Author(s):  
Ali Hajjiah ◽  
Ishac Kandas ◽  
Nader Shehata

Recently, hybrid organic-inorganic perovskites have been extensively studied due to their promising optical properties with relatively low-cost and simple processing. However, the perovskite solar cells have some low optical absorption in the visible spectrum, especially around the red region. In this paper, an improvement of perovskite solar cell efficiency is studied via simulations through adding plasmonic nanoparticles (NPs) at the rear side of the solar cell. The plasmonic resonance wavelength is selected to be very close to the spectrum range of lower absorption of the perovskite: around 600 nm. Both gold and silver nanoparticles (Au and Ag NPs) are selected to introduce the plasmonic effect with diameters above 40 nm, to get an overlap between the plasmonic resonance spectrum and the requested lower absorption spectrum of the perovskite layer. Simulations show the increase in the short circuit current density (Jsc) as a result of adding Au and Ag NPs, respectively. Enhancement in Jsc is observed as the diameter of both Au and Ag NPs is increased beyond 40 nm. Furthermore, there is a slight increase in the reflection loss as the thickness of the plasmonic nanoparticles at the rear side of the solar cell is increased. A significant decrease in the current loss due to transmission is achieved as the size of the nanoparticles increases. As a comparison, slightly higher enhancement in external quantum efficiency (EQE) can be achieved in case of adding Ag NPs rather than Au NPs.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 701 ◽  
Author(s):  
Bao Wang ◽  
Xiangyu Zhu ◽  
Shuhan Li ◽  
Mengwei Chen ◽  
Haifei Lu ◽  
...  

In this study, Ag@SiO2 nanoparticles were synthesized by a modified Stöber method for preparing the TiO2 mesoporous layer of carbon counter electrode-based perovskite solar cells (PSCs) without a hole transporting layer. Compared with normal PSCs (without Ag@SiO2 incorporated in the TiO2 mesoporous layer), PSCs with an optimal content of Ag@SiO2 (0.3 wt. % Ag@SiO2-TiO2) show a 19.46% increase in their power conversion efficiency, from 12.23% to 14.61%, which is mainly attributed to the 13.89% enhancement of the short-circuit current density, from 20.23 mA/cm2 to 23.04 mA/cm2. These enhancements mainly contributed to the localized surface Plasmon resonance effect and the strong scattering effect of Ag@SiO2 nanoparticles. However, increasing the Ag@SiO2 concentration in the mesoporous layer past the optimum level cannot further increase the short-circuit current density and incident photon-to-electron conversion efficiency of the devices, which is primarily ascribed to the electron transport pathways being impeded by the insulating silica shells inside the TiO2 network.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 815 ◽  
Author(s):  
Jiabin Hao ◽  
Huiying Hao ◽  
Jianfeng Li ◽  
Lei Shi ◽  
Tingting Zhong ◽  
...  

In this contribution, the efficiencies of perovskite solar cells have been further enhanced, based on optical optimization studies. The photovoltaic devices with textured perovskite film can be obtained and a power conversion efficiency (PCE) of the textured fluorine-doped tin oxide (FTO)/Ag nanoparticles (NPs) embedded in c-TiO2/m-TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au showed 33.7% enhancement, and a maximum of up to 14.01% was achieved. The efficiency enhancement can be attributed to the light trapping effect caused by the textured FTO and the incorporated Ag NPs, which can enhance scattering to extend the optical pathway in the photoactive layer of the solar cell. Interestingly, aside from enhanced light absorption, the charge transport characteristics of the devices can be improved by optimizing Ag NPs loading levels, which is due to the localized surface plasmon resonance (LSPR) from the incorporated Ag NPs. This light trapping strategy helps to provide an appropriated management for optical optimization of perovskite solar cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Marko Berginc ◽  
Urša Opara Krašovec ◽  
Marko Topič

A plasmonic effect of silver nanoparticles (Ag NPs) in dye-sensitized solar cells (DSSCs) is studied. The solutions of silver nitrate in isopropanol, ethylene glycol, or in TiO2sol were examined as possible precursors for Ag NPs formation. The solutions were dip-coated on the top of the porous TiO2layer. The results of optical measurements confirmed the formation of Ag NPs throughout the porous TiO2layer after the heat treatment of the layers above 100°C. Heat treatment at 220°C was found to be optimal regarding the formation of the Ag NPs. The porous TiO2layers with Ag NPs have been evaluated also in DSSC by measuring current-voltage characteristics and the external quantum efficiency of the cells. In addition, the amount of adsorbed dye has been determined to prove the plasmonic effect in the cells. TheI-Vcharacterization of the DSSCs revealed an increase of the short circuit current in the presence of Ag NPs although the amount of the attached dye molecules decreased. These results confirm that the performance enhancement is related to the plasmonic effect. However, neither a thin sol-gel TiO2layer nor poly(4-vinylpyridine) shells provide effective protection for the long term stability of the Ag NPs against the corrosion ofI3-/I-based electrolyte.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1525
Author(s):  
Sergey Vorobyev ◽  
Elena Vishnyakova ◽  
Maxim Likhatski ◽  
Alexander Romanchenko ◽  
Ivan Nemtsev ◽  
...  

Carey Lea silver hydrosol is a rare example of very concentrated colloidal solutions produced with citrate as only protective ligands, and prospective for a wide range of applications, whose properties have been insufficiently studied up to now. Herein, the reactivity of the immobilized silver nanoparticles toward oxidation, sulfidation, and sintering upon their interaction with hydrogen peroxide, sulfide ions, and chlorocomplexes of Au(III), Pd(II), and Pt(IV) was investigated using SEM and X-ray photoelectron spectroscopy (XPS). The reactions decreased the number of carboxylic groups of the citrate-derived capping and promoted coalescence of 7 nm Ag NPs into about 40 nm ones, excluding the interaction with hydrogen peroxide. The increased nanoparticles form loose submicrometer aggregates in the case of sulfide treatment, raspberry-like micrometer porous particles in the media containing Pd(II) chloride, and densely sintered particles in the reaction with inert H2PtCl6 complexes, probably via the formation of surface Ag-Pt alloys. The exposure of Ag NPs to HAuCl4 solution produced compact Ag films along with nanocrystals of Au metal and minor Ag and AgCl. The results are promising for chemical ambient temperature sintering and rendering silver-based nanomaterials, for example, for flexible electronics, catalysis, and other applications.


2019 ◽  
Author(s):  
Mohd Taukeer Khan ◽  
Manuel Salado ◽  
Abdullah R. D. Almohammedi ◽  
Samrana Kazim ◽  
Shahzada Ahmad

<p>The electron and hole selective contact (SC) play a pivotal role in the performance of perovskite solar cells. In order to separate the interfacial phenomenon from bulk, the influence of charge SC was elucidated, by means of impedance spectroscopy. The specific role played by TiO<sub>2</sub> and <i>Spiro-OMeTAD</i> as electron and hole SC in perovskite solar cells was investigated at short circuit condition at different temperatures. We have probed MAPbI<sub>3</sub> and (FAPbI<sub>3</sub>)<sub>0.85</sub>(MAPbBr<sub>3</sub>)<sub>0.15 </sub>and elucidated parameters such as charge carrier mobility, recombination resistance, time constant and charge carrier kinetics in perovskite layer and at the interface of perovskite/SC. Charge carrier mobility in mixed perovskite was found to be nearly two order of magnitude higher as compared to MAPbI<sub>3</sub>. Moreover, the carrier mobility in devices with only electron SC was found to be higher as compared only hole SC. The charge accumulation at TiO<sub>2</sub>/perovskite/<i>Spiro</i>-OMeTAD interfaces were studied via frequency dependent capacitance, revealing higher charge accumulation at perovskite/S<i>piro</i>-OMeTAD than at TiO<sub>2</sub>/perovskite interface. By performing varying temperature frequency dependent capacitance measurements the distribution of density of state within the bandgap of the perovskites, the emission rate of electrons from the trap states and traps activation energy was determined. </p>


Sign in / Sign up

Export Citation Format

Share Document