scholarly journals Design and Evaluation of Europium Containing Mesoporous Bioactive Glass Nanospheres: Doxorubicin Release Kinetics and Inhibitory Effect on Osteosarcoma MG 63 Cells

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 961 ◽  
Author(s):  
Ying Zhang ◽  
Meng Hu ◽  
Xiang Wang ◽  
Zhufa Zhou ◽  
Yu Liu

Functional ions and drug factors play a vital role in stimulating bone tissue regeneration as we understand it. In this work, europium-containing mesoporous bioactive glass nanospheres (Eu/MBGs), composed of 60% SiO2—(36–x)%CaO—x%Eu2O3—4%P2O5 (x = 0, 0.5, 1, 2 mol%), were prepared by a facile sol-gel process. The results indicate that Eu ions play an important role to influence the microstructure of MBGs, in which a suitable concentration of Eu (1 mol%) increases their surface area (502 m2/g) as well as their pore volume (0.34 cm3/g). Proper doping of Eu ions in MBGs can observably induce apatite mineralization and improve the doxorubicin (DOX) release behavior. Furthermore, DOX-loaded Eu/MBGs could maintain a long-term inhibitory effect on the viability of osteosarcoma MG 63 cells. This work has demonstrated that it is possible to develop functional Eu/MBGs by combining excellent apatite-mineralization ability, controllable drug (DOX) release and antitumor functions for the therapy of bone tissue regeneration.

2015 ◽  
Vol 3 (43) ◽  
pp. 8558-8566 ◽  
Author(s):  
Nan Li ◽  
Chuan Jiang ◽  
Xingdi Zhang ◽  
Xinfeng Gu ◽  
Jingwei Zhang ◽  
...  

An rhBMP-2/MBG/CPC scaffold is beneficial for rapid bone tissue regeneration in the early stage.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xingdi Zhang ◽  
Deliang Zeng ◽  
Nan Li ◽  
Jin Wen ◽  
Xinquan Jiang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1611
Author(s):  
Caroline J. Harrison ◽  
Paul V. Hatton ◽  
Piergiorgio Gentile ◽  
Cheryl A. Miller

Injectable nanoscale hydroxyapatite (nHA) systems are highly promising biomaterials to address clinical needs in bone tissue regeneration, due to their excellent biocompatibility, bioinspired nature, and ability to be delivered in a minimally invasive manner. Bulk strontium-substituted hydroxyapatite (SrHA) is reported to encourage bone tissue growth by stimulating bone deposition and reducing bone resorption, but there are no detailed reports describing the preparation of a systematic substitution up to 100% at the nanoscale. The aim of this work was therefore to fabricate systematic series (0–100 atomic% Sr) of SrHA pastes and gels using two different rapid-mixing methodological approaches, wet precipitation and sol-gel. The full range of nanoscale SrHA materials were successfully prepared using both methods, with a measured substitution very close to the calculated amounts. As anticipated, the SrHA samples showed increased radiopacity, a beneficial property to aid in vivo or clinical monitoring of the material in situ over time. For indirect methods, the greatest cell viabilities were observed for the 100% substituted SrHA paste and gel, while direct viability results were most likely influenced by material disaggregation in the tissue culture media. It was concluded that nanoscale SrHAs were superior biomaterials for applications in bone surgery, due to increased radiopacity and improved biocompatibility.


2019 ◽  
Vol 21 (8) ◽  
pp. 1900287 ◽  
Author(s):  
Melek Erol‐Taygun ◽  
Irem Unalan ◽  
Maizlinda Izwana Binti Idris ◽  
João F. Mano ◽  
Aldo R. Boccaccini

Sign in / Sign up

Export Citation Format

Share Document