scholarly journals A New Lamellar Gold Thiolate Coordination Polymer, [Au(m-SPhCO2H)]n, for the Formation of Luminescent Polymer Composites

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1408 ◽  
Author(s):  
Oleksandra Veselska ◽  
Nathalie Guillou ◽  
Gilles Ledoux ◽  
Chia-Ching Huang ◽  
Katerina Dohnalova Newell ◽  
...  

The photoluminescence of gold thiolate clusters brings about many potential applications, but its origin is still elusive because of its complexity. A strategy in understanding the structure–properties relationship is to study closely related neutral gold thiolate coordination polymers (CPs). Here, a new CP is reported, [Au(m-SPhCO2H)]n. Its structure is lamellar with an inorganic layer made of Au–S–Au–S helical chains, similar to the [Au(p-SPhCO2H)]n analog. An in-depth study of its photophysical properties revealed that it is a bright yellow phosphorescent emitter with a band centered at 615 nm and a quantum yield (QY) of 19% at room temperature and in a solid state. More importantly, a comparison to the para-analog, which has a weak emission, displayed a strong effect of the position of the electron withdrawing group (EWG) on the luminescent properties. In addition, [Au(m-SPhCO2H)]n CPs were mixed with organic polymers to generate transparent and flexible luminescent thin films. The ability to tune the emission position with the appropriate contents makes these nontoxic polymer composites promising materials for lighting devices.

2022 ◽  
Vol 9 ◽  
Author(s):  
Jingyi Zhao ◽  
Xiaoyan Zheng

Luminescent molecular aggregates have attracted worldwide attention because of their potential applications in many fields. The luminescent properties of organic aggregates are complicated and highly morphology-dependent, unraveling the intrinsic mechanism behind is urgent. This review summarizes recent works on investigating the structure–property relationships of organic molecular aggregates at different environments, including crystal, cocrystal, amorphous aggregate, and doped systems by multiscale modeling protocol. We aim to explore the influence of intermolecular non-covalent interactions on molecular packing and their photophysical properties and then pave the effective way to design, synthesize, and develop advanced organic luminescent materials.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haruki Minami ◽  
Natsumi Itamoto ◽  
Wataru Watanabe ◽  
Ziying Li ◽  
Kazuki Nakamura ◽  
...  

Abstract DNA-based materials have attracted much attention due to their unique photo-functional properties and potential applications in various fields such as luminescent and biological systems, nanodevices, etc. In this study, the photophysical properties of a chiral Eu(III) complex, namely (Eu(D-facam)3), within DNA films were extensively investigated. The enhancement of photoluminescence (more than 25-folds increase of luminescence quantum yield) and degree of circularly polarization in luminescence (glum = − 0.6) was observed upon interaction with DNA. Various photophysical analyses suggested that the emission enhancement was mainly due to an increase of the sensitization efficiency (high ηsens) from the ligands to Eu(III) and suppression of the vibrational deactivation upon immobilization onto the DNA molecule. From CD and VCD measurements, it was suggested that the coordination structure of Eu(D-facam)3 was affected by the interaction with DNA, suggesting that the structural change of Eu(D-facam)3 contributed to the improvement of its luminescent properties.


2015 ◽  
Vol 14 (2) ◽  
pp. 389-397
Author(s):  
Corneliu S. Stan ◽  
Petronela Horlescu ◽  
Daniel Sutiman ◽  
Carmen Mita ◽  
Cristian Peptu ◽  
...  

Author(s):  
Jie Chen ◽  
Yifei Wang ◽  
Weixing Chen

Multilayer composites have the potential applications in organic film capacitors due to their excellent dielectric and breakdown characteristic. However, poor efficiency (η) and limited available energy density (Ue) of the...


2020 ◽  
Vol 40 (5) ◽  
pp. 373-393 ◽  
Author(s):  
Narendra Singh Chundawat ◽  
Nishigandh Pande ◽  
Ghasem Sargazi ◽  
Mazaher Gholipourmalekabadi ◽  
Narendra Pal Singh Chauhan

AbstractRedox-active polymers among the energy storage materials (ESMs) are very attractive due to their exceptional advantages such as high stability and processability as well as their simple manufacturing. Their applications are found to useful in electric vehicle, ultraright computers, intelligent electric gadgets, mobile sensor systems, and portable intelligent clothing. They are found to be more efficient and advantageous in terms of superior processing capacity, quick loading unloading, stronger security, lengthy life cycle, versatility, adjustment to various scales, excellent fabrication process capabilities, light weight, flexible, most significantly cost efficiency, and non-toxicity in order to satisfy the requirement for the usage of these potential applications. The redox-active polymers are produced through organic synthesis, which allows the design and free modification of chemical constructions, which allow for the structure of organic compounds. The redox-active polymers can be finely tuned for the desired ESMs applications with their chemical structures and electrochemical properties. The redox-active polymers synthesis also offers the benefits of high-scale, relatively low reaction, and a low demand for energy. In this review we discussed the relationship between structural properties of different polymers for solar energy and their energy storage applications.


2020 ◽  
Vol 234 ◽  
pp. 115908 ◽  
Author(s):  
Yao Liu ◽  
Keyu Lu ◽  
Xiuting Hu ◽  
Zhengyu Jin ◽  
Ming Miao

Author(s):  
Sofia Canola ◽  
Yasi Dai ◽  
Fabrizia Negri

Conjugated singlet ground state diradicals have received remarkable attention owing to their potential applications in optoelectronic devices. A distinctive character of these systems is the location of the double exciton state, a low lying excited state dominated by the doubly excited H,H→L,L configuration, which may influence optical and other photophysical properties. In this contribution we investigate this specific excited state, for a series of recently synthesized conjugated diradicals, employing time dependent density functional theory based on the unrestricted parallel spin reference configuration in the spin-flip formulation (SF-TDDFT) and standard TD calculations based on the unrestricted antiparallel spin reference configuration (TDUDFT). The quality of the computed results is assessed considering diradical and multiradical descriptors and the excited state wavefunction composition.


Author(s):  
Jorge Aguilera ◽  
Víctor García-González ◽  
Manuel Alatorre-Meda ◽  
Eustolia Rodríguez-Velázquez ◽  
Ignacio Rivero

In this work, we explored the synthesis of 4,4-difluoro-4-bora-3a,4a-diazas-indacene (BODIPYs) bound to five different amino acids (BODIPY-FAA) (glycine, alanine, leucine, phenylalanine, and tyrosine) (amino group is kept protected with fluorophore Fmoc) and evaluated these conjugates in terms of (i) their photophysical properties and (ii) their potential application as cell staining agents of suspension and adherent cells at healthy and stress conditions. In general, all synthesized BODIPY-FAA (3a-3e) were found to emit fluorescence in the blue and green regions of the spectrum (depending on the solvent conditions). However, BODIPY-FTyr(trt) (3e) showed the best molar extinction coefficient (ε = 28,198 M-1 cm-1) and quantum yield (Φ = 0.17). Biologically speaking, all synthesized conjugates demonstrated a selective affinity for the cytoplasm of Langerhans β-cells employed as a model, being the BODIPY-FLeu conjugate the one displaying the highest observed intensity. As such, our results reveal the BODIPY-FAA as a novel attractive tool for the specific staining of the cell cytoplasm, demonstrating not only a dual fluorescence emission but also a sensing capability to recognize different cell states.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 32 ◽  
Author(s):  
Siyang Ding ◽  
Bicheng Yao ◽  
Louis Schobben ◽  
Yuning Hong

Fluorescent dyes, especially those emitting in the long wavelength region, are excellent candidates in the area of bioassay and bioimaging. In this work, we report a series of simple organic fluorescent dyes consisting of electron-donating aniline groups and electron-withdrawing barbituric acid groups. These dyes are very easy to construct while emitting strongly in the red region in their solid state. The photophysical properties of these dyes, such as solvatochromism and aggregation-induced emission, are systematically characterized. Afterward, the structure–property relationships of these barbituric acid based fluorogens are discussed. Finally, we demonstrate their potential applications for protein amyloid fibril detection.


Sign in / Sign up

Export Citation Format

Share Document