scholarly journals The Synergistic Effect of Zinc Ferrite Nanoparticles Uniformly Deposited on Silver Nanowires for the Biofilm Inhibition of Candida albicans

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1431 ◽  
Author(s):  
Deepika Thakur ◽  
Saravanan Govindaraju ◽  
KyuSik Yun ◽  
Jin-Seo Noh

Near-monodisperse zinc ferrite nanoparticles (ZnFe2O4 NPs) are synthesized by a co-precipitation method and deposited on the surface of silver nanowires (AgNWs), employing a stepwise solution method. The resulting hybrid nanostructures (ZnFe2O4@AgNWs) show a thin and uniform layer of ZnFe2O4 NPs at an optimum weight ratio of 1:6 between the two component nanostructures. The hybrid nanostructures retain the high crystal quality and phase purity of their constituents. It is demonstrated that the ZnFe2O4@AgNWs hybrid nanostructures are effective at inhibiting the biofilm formation of Candida albicans cells. The biofilm inhibition activity of the hybrid nanostructures is estimated to be more than 50% at a low concentration of 100 µg/mL from both crystal violet assay and XTT assay, which are more than 8-fold higher than those of pure AgNWs and ZnFe2O4 NPs. This greatly enhanced biofilm inhibition activity is attributed to the ZnFe2O4 NPs-carrying membrane penetration by AgNWs and the subsequent interaction between Candida cells and ZnFe2O4 NPs. These results indicate that the ZnFe2O4@AgNWs hybrid nanostructures have great potential as a new type of novel antibiofilm agent.

2021 ◽  
Vol 12 ◽  
Author(s):  
Khristina G. Judan Cruz ◽  
Eleonor D. Alfonso ◽  
Somar Israel D. Fernando ◽  
Kozo Watanabe

The virulence and drug resistance of globally prevalent Candida albicans has presented complications toward its control while advances in effective antivirulence drugs remain critical. Emerging methods are now being evaluated to facilitate development of novel therapeutic approaches against this pathogen. This study focuses on the biofilm formation inhibition of ethnobotanical crude extracts and the use of nanotechnology through the ethnobotanically-synthesized gold nanoparticles to control C. albicans. Control on biofilm formation was compared using crude extracts (CEs) and biologically synthesized gold nanoparticles (CEs + AuNPs). Significantly lower biofilm formation was exhibited in thirteen (13) CEs and fourteen (14) CEs + AuNPs. Biofilm-linked genes Bcr1 and HSP90 expression were consequently downregulated. Higher biofilm inhibition activity was noted in some CEs + AuNPs compared to its counterpart CEs. This study emphasizes the biofilm inhibition activity of ethnobotanicals and the use of nanoparticles to enhance delivery of compounds, and points to its prospects for developing anti-pathogenic drugs without evolving resistance.


2020 ◽  
Vol 28 ◽  
pp. 100477 ◽  
Author(s):  
K. Sathiyamurthy ◽  
C. Rajeevgandhi ◽  
S. Bharanidharan ◽  
P. Sugumar ◽  
S. Subashchandrabose

2011 ◽  
Vol 391-392 ◽  
pp. 545-548 ◽  
Author(s):  
Ting Li Cheng ◽  
Min Zheng ◽  
Zuo Shan Wang ◽  
Zhong Li Chen

Zinc ferrite (ZnFe2O4) crystalline was prepared via co-precipitation method, followed by calcinations at various temperatures from 400 to 600 . Poly (vinyl pyrrolidone) (PVP) was used as a stabilizer to prevent the particles from agglomeration. The variation of crystallite size has been investigated using X-ray powder diffraction (XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope(SEM), and a recipe has been developed for the preparation of nano ZnFe2O4with 6.7nm size and complete crystallization.


2021 ◽  
Vol 588 ◽  
pp. 346-356
Author(s):  
Shouchun Bao ◽  
Qingke Tan ◽  
Xiangli Kong ◽  
Can Wang ◽  
Yiyu Chen ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 108
Author(s):  
Robert Zarnowski ◽  
Anna Jaromin ◽  
Agnieszka Zagórska ◽  
Eddie G. Dominguez ◽  
Katarzyna Sidoryk ◽  
...  

Candida albicans forms extremely drug-resistant biofilms, which present a serious threat to public health globally. Biofilm-based infections are difficult to treat due to the lack of efficient antifungal therapeutics, resulting in an urgent demand for the development of novel antibiofilm strategies. In this study, the antibiofilm activity of DiMIQ (5,11-dimethyl-5H-indolo[2,3-b]quinoline) was evaluated against C. albicans biofilms. DiMIQ is a synthetic derivative of indoquinoline alkaloid neocryptolepine isolated from a medicinal African plant, Cryptolepis sanguinolenta. Antifungal activity of DiMIQ was determined using the XTT assay, followed by cell wall and extracellular matrix profiling and cellular proteomes. Here, we demonstrated that DiMIQ inhibited C. albicans biofilm formation and altered fungal cell walls and the extracellular matrix. Cellular proteomics revealed inhibitory action against numerous translation-involved ribosomal proteins, enzymes involved in general energy producing processes and select amino acid metabolic pathways including alanine, aspartate, glutamate, valine, leucine and isoleucine. DiMIQ also stimulated pathways of cellular oxidation, metabolism of carbohydrates, amino acids (glycine, serine, threonine, arginine, phenylalanine, tyrosine, tryptophan) and nucleic acids (aminoacyl-tRNA biosynthesis, RNA transport, nucleotide metabolism). Our findings suggest that DiMIQ inhibits C. albicans biofilms by arresting translation and multidirectional pathway reshaping of cellular metabolism. Overall, this agent may provide a potent alternative to treating biofilm-associated Candida infections.


2021 ◽  
Vol 7 (2) ◽  
pp. 40
Author(s):  
Semiha Duygu Sutekin ◽  
Mehtap Sahiner ◽  
Selin Sagbas Suner ◽  
Sahin Demirci ◽  
Olgun Güven ◽  
...  

Nitrogen-doped carbon dots (N-doped C-dots) was synthesized by using poly(vinyl amine) (PVAm) as a nitrogen source and citric acid (CA) as a carbon source via the hydrothermal method. Various weight ratios of CA and PVAm (CA:PVAm) were used to synthesize N-doped C-dots. The N-doped C-dots revealed emission at 440 nm with excitation at 360 nm and were found to increase the fluorescence intensity with an increase in the amount of PVAm. The blood compatibility studies revealed no significant hemolysis for N-doped C-dots that were prepared at different ratios of CA:PVAm for up to 500 μg/mL concentration with the hemolysis ratio of 1.96% and the minimum blood clotting index of 88.9%. N-doped C-dots were found to be more effective against Gram-positive bacteria than Gram-negative bacteria, with the highest potency on Bacillus subtilis (B. subtilis). The increase in the weight ratio of PVAm in feed during C-dots preparation from 1 to 3 leads to a decrease of the minimum bactericidal concentration (MBC) value from 6.25 to 0.75 mg/mL for B. subtilis. Antibiofilm ability of N-doped C-dots prepared by 1:3 ratio of CA:PVAm was found to reduce %biofilm inhibition and eradication- by more than half, at 0.78 mg/mL for E. coli and B. subtilis generated biofilms and almost destroyed at 25 mg/mL concentrations.


Sign in / Sign up

Export Citation Format

Share Document