scholarly journals Impact of Co2+ Substitution on Microstructure and Magnetic Properties of CoxZn1-xFe2O4 Nanoparticles

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1602 ◽  
Author(s):  
Mohamed ◽  
Alzaid ◽  
Abdelbaky ◽  
Amghouz ◽  
García-Granda ◽  
...  

In the present work, we synthesized CoxZn1-xFe2O4 spinel ferrite nanoparticles (x= 0, 0.1, 0.2, 0.3 and 0.4) via the precipitation and hydrothermal-joint method. Structural parameters were cross-verified using X-ray powder diffraction (XRPD) and electron microscopy-based techniques. The magnetic parameters were determined by means of vibrating sample magnetometry. The as-synthesized CoxZn1-xFe2O4 nanoparticles exhibit high phase purity with a single-phase cubic spinel-type structure of Zn-ferrite. The microstructural parameters of the samples were estimated by XRD line profile analysis using the Williamson–Hall approach. The calculated grain sizes from XRPD analysis for the synthesized samples ranged from 8.3 to 11.4 nm. The electron microscopy analysis revealed that the constituents of all powder samples are spherical nanoparticles with proportions highly dependent on the Co doping ratio. The CoxZn1-xFe2O4 spinel ferrite system exhibits paramagnetic, superparamagnetic and weak ferromagnetic behavior at room temperature depending on the Co2+ doping ratio, while ferromagnetic ordering with a clear hysteresis loop is observed at low temperatures (5K). We concluded that replacing Zn2+ ions with Co2+ ions changes both the structural and magnetic properties of ZnFe2O4 nanoparticles.

2017 ◽  
Vol 899 ◽  
pp. 48-53
Author(s):  
Rodrigo Uchida Ichikawa ◽  
Walter Kenji Yoshito ◽  
Margarida Juri Saeki ◽  
Willian C.A. Maranhão ◽  
Fátima Goulart ◽  
...  

Nanostructured Mn-Zn ferrites were synthesized using co-precipitation in alkaline solution with different pH. The samples were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), thermal analysis (TG-DTA), dynamic light scattering (DLS) and scanning electron microscopy (SEM) techniques. Monophasic nanoparticles were formed when synthesized with pH 10.5. This sample was heat-treated and its XRD data was refined by the Rietveld method. Mean crystallite sizes and microstrains were determined from X-ray line profile analysis using Single-Line and Warren-Averbach methods, which revealed a mean crystallite size of approximately 10 nm and negligible microstrains. Zn content was estimated using refined cell parameters, giving a value of 33 at %, in accordance with XRF result. TG-DTA revealed that the incorporation of α-Fe2O3 occurs around 1130 °C and 1200 °C with recrystallization of the Mn-Zn ferrite spinel phase. DLS showed that mean particle size increase with temperature up to 1159 nm at 800 °C. SEM analysis showed the samples agglomerate and present similar morphology with negligible size changing when calcined between 280 °C and 800 °C. However, the sample calcined at 1200 °C presents larger agglomerates due to the sintering process.


2011 ◽  
Vol 217-218 ◽  
pp. 1743-1746
Author(s):  
Xing Long Guo

TiO2 with 20nm in diameter have been prepared by using magnetron sputtering technique. The structure of these powers was determined by X-ray diffraction experiments. The average grain size and particle size in these powers were measured by the line profile analysis method of X-ray diffraction patterns and by scan electron microscopy, respectively. The thin films were investigated by using XRD, SEM measurements.


2014 ◽  
Vol 47 (1) ◽  
pp. 303-315 ◽  
Author(s):  
Zhiyang Wang ◽  
Ulf Garbe ◽  
Huijun Li ◽  
Yanbo Wang ◽  
Andrew J. Studer ◽  
...  

This work presents a detailed microstructure and texture study of various hydrided Zircaloy-4 materials by neutron diffraction and microscopy. The results show that the precipitated δ-ZrH1.66generally follows the δ(111)//α(0001) and δ[1{\overline 1}0]//α[11{\overline 2}0] orientation relationship with the α-Zr matrix. The δ-hydride displays a weak texture that is determined by the texture of the α-Zr matrix, and this dependence essentially originates from the observed orientation correlation between α-Zr and δ-hydride. Neutron diffraction line profile analysis and high-resolution transmission electron microscopy observations reveal a significant number of dislocations present in the δ-hydride, with an estimated average density one order of magnitude higher than that in the α-Zr matrix, which contributes to the accommodation of the substantial misfit strains associated with hydride precipitation in the α-Zr matrix. The present observations provide an insight into the behaviour of δ-hydride precipitation in zirconium alloys and may help with understanding the induced embrittling effect of hydrides.


Author(s):  
Tamas Ungár ◽  
Jeno Gubicza

X-ray powder diffraction is a powerful tool for characterising the microstructure of crystalline materials in terms of size and strain. It is widely applied for nanocrystalline materials, especially since other methods, in particular electron microscopy is, on the one hand tedious and time consuming, on the other hand, due to the often metastable states of nanomaterials it might change their microstructures. It is attempted to overview the applications of microstruture characterization by powder diffraction on nanocrystalline metals, alloys, ceramics and carbon base materials. Whenever opportunity is given, the data provided by the X-ray method are compared and discussed together with results of electron microscopy. Since the topic is vast we do not try to cover the entire field.


JOM ◽  
2011 ◽  
Vol 63 (7) ◽  
pp. 61-70 ◽  
Author(s):  
Michael B. Kerber ◽  
Michael J. Zehetbauer ◽  
Erhard Schafler ◽  
Florian C. Spieckermann ◽  
Sigrid Bernstorff ◽  
...  

2012 ◽  
Vol 10 (6) ◽  
pp. 1799-1807 ◽  
Author(s):  
Tamara Slatineanu ◽  
Eliano Diana ◽  
Valentin Nica ◽  
Victor Oancea ◽  
Ovidiu Caltun ◽  
...  

AbstractThe present study is reporting the influence of the chelating/combustion agents on the magnetic properties of Zn ferrite. Six chelating/combustion agents, citric acid, egg white, tartaric acid, glycine, glucose and urea, were used to obtain monophase zinc nanoferrite via a sol-gel auto-combustion method. The samples were subjected to a comparative study of structural features and magnetic properties by means of infrared spectroscopy, X-ray diffractometry, scanning electron microscopy and vibrating sample magnetometry. Significant influence of fuel and combustion mode was observed in the magnetic behavior of as-obtained samples. Values of the structural parameters were discovered to vary as a function of fuel choice, and to obtain crystallite size between 38 and 62 nm, inversion degree between 0.239 and 0.807, lattice parameter between 8.4125 and 8.4432 Å. The optimization of sol-gel method synthesis of zinc ferrite nanoparticles by chosing the appropriate fuel is providing structural and magnetic properties of zinc nanoferrite as potential materials to be used in biomedical applications.


2018 ◽  
Vol 916 ◽  
pp. 91-95
Author(s):  
Beh Hoe Guan ◽  
Muhammad Hanif bin Zahari ◽  
Kean Chuan Lee

Spinel ferrite with the chemical formula of Mn0.5Zn0.5LaxFe2-xO4(x= 0.02, 0.04, 0.06, 0.08, 0.10) were prepared by a sol-gel auto-combustion method. The effect of the rare-earth substitution on the microstructural properties of the synthesized powders were investigated through X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while for the magnetic properties, vibrating sample magnetometer (VSM) measurements were made. XRD patterns revealed characteristic peaks corresponding to spinel Mn-Zn ferrite structures with accompanying secondary phases, such as Fe2O3and LaFeO3. The initial addition of La3+into the spinel ferrite system resulted in an initial spike of the lattice parameter and crystallite size before proceeding to decrease as the rare-earth content continues to decrease. FESEM micrographs reveals agglomerated particles with considerable grain size distribution. The magnetic properties, especially the saturation magnetization,Ms, was found to decrease with each increase in La3+substitution. The research findings revealed the critical influence of the La3+substitution towards the overall structural and magnetic properties of the Mn-Zn ferrite samples.


2002 ◽  
Vol 35 (5) ◽  
pp. 594-599 ◽  
Author(s):  
E. Zolotoyabko ◽  
J. P. Quintana

Energy-variable X-ray diffraction at a synchrotron beamline has been used to control the X-ray penetration depth and thus to study structural parameters in polycrystalline and textured materials with depth resolution. This approach was applied to the investigation of the depth evolution of microstructure in the nacre layer of bivalvia seashells. According to conventional X-ray diffraction and scanning electron microscopy, the nacre layer in the seashells ofAcanthocardia tuberculataunder investigation consists of large [001]-oriented lamellae packed nearly parallel to the inner shell surface. In this paper, attention is focused on the microstructural information that can be extracted from the shapes of diffraction profiles (line profile analysis) measured at X-ray energies that are varied by small steps. Depth dependences of the thickness of the lamellae and the average microstrain fluctuation are revealed.


Sign in / Sign up

Export Citation Format

Share Document