scholarly journals Facile Synthesis of Antimony Tungstate Nanosheets as Anodes for Lithium-Ion Batteries

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1689 ◽  
Author(s):  
Yong Liu ◽  
Yue Wang ◽  
Fei Wang ◽  
Zhenxiao Lei ◽  
Wanhong Zhang ◽  
...  

Lithium-ion batteries (LIBs) have been widely used in the fields of smart phones, electric vehicles, and smart grids. With its opened Aurivillius structure, tungstate antimony oxide (Sb2WO6, SWO), constituted of {Sb2O2}2n+ and {WO4}2n−, is rarely investigated as an anode for lithium-ion batteries. In this work, Sb2WO6 with nanosheets morphology was successfully synthesized using a simple microwave hydrothermal method and systematically studied as an anode for lithium-ion batteries. The optimal SWO (SWO-60) exhibits a high specific discharge capacity and good rate capability. The good electrochemical performance could be ascribed to mesoporous nanosheets morphology, which is favorable for the penetration of the electrolyte and charge transportation. The results show that this nanostructured SWO is a promising anode material for LIBs.

2015 ◽  
Vol 3 (26) ◽  
pp. 13648-13652 ◽  
Author(s):  
Naiteng Wu ◽  
Hao Wu ◽  
Wei Yuan ◽  
Shengjie Liu ◽  
Jinyu Liao ◽  
...  

One-dimensional LiNi0.8Co0.15Al0.05O2 microrods are synthesized through chemical lithiation of mixed Ni, Co, and Al oxalate microrod. The rod-like morphology together with structural stability endows it with superior rate capability and cycle performance for highly reversible lithium storage.


Nanoscale ◽  
2015 ◽  
Vol 7 (28) ◽  
pp. 11940-11944 ◽  
Author(s):  
Yanjun Zhang ◽  
Li Jiang ◽  
Chunru Wang

A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process. It exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (23) ◽  
pp. 19522-19530 ◽  
Author(s):  
Xiangyang Zhou ◽  
Tao Bai ◽  
Feng Chen ◽  
JingJing Tang ◽  
Qunchao Liao ◽  
...  

MnOx nanoparticles sandwiched between nitrogen-doped carbon plates architecture (C/MnOx/C) has been successfully synthesized via a step-by-step strategy.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


2015 ◽  
Vol 44 (38) ◽  
pp. 16746-16751 ◽  
Author(s):  
Peixun Xiong ◽  
Guojin Zeng ◽  
Lingxing Zeng ◽  
Mingdeng Wei

Prussian blue analogues, Mn[Fe(CN)6]0.6667·nH2O cubes, were synthesized and exhibited a large capacity, good rate capability and cycling stability with a high Coulombic efficiency for Li-ion intercalation.


RSC Advances ◽  
2014 ◽  
Vol 4 (52) ◽  
pp. 27488-27492 ◽  
Author(s):  
Xiayin Yao ◽  
Junhua Kong ◽  
Xiaosheng Tang ◽  
Dan Zhou ◽  
Chenyang Zhao ◽  
...  

Porous CoFe2O4 nanosheets are prepared via a low-cost and scalable process and are shown to be high-performance anode materials for lithium-ion batteries.


2018 ◽  
Vol 6 (3) ◽  
pp. 1196-1200 ◽  
Author(s):  
Yubin Liu ◽  
Minghuang Guo ◽  
Zhenwei Liu ◽  
Qiaohua Wei ◽  
Mingdeng Wei

A rapid and facile synthetic route has been developed to fabricate hierarchically mesoporous TiO2–B, which is composed of nanoparticles and exhibits enhanced reversible capacity and rate capability in lithium ion batteries.


RSC Advances ◽  
2020 ◽  
Vol 10 (32) ◽  
pp. 19117-19123 ◽  
Author(s):  
Aihua Ran ◽  
Shuxiao Chen ◽  
Siwei Zhang ◽  
Siyang Liu ◽  
Zihao Zhou ◽  
...  

Accurate and efficient screening of retired lithium-ion batteries from electric vehicles is crucial to guarantee reliable secondary applications such as in energy storage, electric bicycles, and smart grids.


2013 ◽  
Vol 06 (06) ◽  
pp. 1350054 ◽  
Author(s):  
CHAO WU ◽  
QUANCHAO ZHUANG ◽  
YONGXIN WU ◽  
LEILEI TIAN ◽  
XINXI ZHANG ◽  
...  

Fe 3 O 4/carbon nanotubes (CNTs) nanocomposites are successfully prepared by a facile hydrothermal method, without any reducing agents. SEM shows that the CNTs are dispersed well in the Fe 3 O 4 nanoparticles of 50 to 100 nm in size. The electrochemical properties of the prepared nanocomposites as anode materials are further evaluated by galvanostatic charge/discharge cycling and cyclic voltammetry (CV). Results show that the nanocomposites display an initial discharge capacity of 1421 mAh⋅g-1 and maintain 1100 mAh⋅g-1 up to 40 cycles in the voltage of 0.005–3.0 V at 100 mAh⋅g-1. When the current density is to 0.5, 1, 2, 5 and 1 C, the nanocomposites still exhibit discharge capacity of 1615.8, 817.0, 585.0, 391.0 and (585.0 ± 45.0) mAh⋅g-1, respectively, which are potential for anode materials in lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document