scholarly journals tRNA Synthetases Are Recruited to Yeast Ribosomes by rRNA Expansion Segment 7L but Do Not Require Association for Functionality

2021 ◽  
Vol 7 (4) ◽  
pp. 73
Author(s):  
Nina Krauer ◽  
Robert Rauscher ◽  
Norbert Polacek

Protein biosynthesis is essential for any organism, yet how this process is regulated is not fully understood at the molecular level. During evolution, ribosomal RNA expanded in specific regions, referred to as rRNA expansion segments (ES). First functional roles of these expansions have only recently been discovered. Here we address the role of ES7La located in the large ribosomal subunit for factor recruitment to the yeast ribosome and the potential consequences for translation. Truncation of ES7La has only minor effects on ribosome biogenesis, translation efficiency and cell doubling. Using yeast rRNA deletion strains coupled with ribosome-specific mass spectrometry we analyzed the interactome of ribosomes lacking ES7La. Three aminoacyl-tRNA synthetases showed reduced ribosome association. Synthetase activities however remained unaltered suggesting that the pool of aminoacylated tRNAs is unaffected by the ES deletion. These results demonstrated that aminoacylation activities of tRNA synthetases per se do not rely on ribosome association. These findings suggest a role of ribosome-associated aminoacyl-tRNA synthetase beyond their core enzymatic functions.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hauke S. Hillen ◽  
Elena Lavdovskaia ◽  
Franziska Nadler ◽  
Elisa Hanitsch ◽  
Andreas Linden ◽  
...  

AbstractRibosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.


2016 ◽  
Vol 113 (42) ◽  
pp. 11967-11972 ◽  
Author(s):  
Pan Zhu ◽  
Yuqiu Wang ◽  
Nanxun Qin ◽  
Feng Wang ◽  
Jia Wang ◽  
...  

Ribosome production in eukaryotes requires the complex and precise coordination of several hundred assembly factors, including many small nucleolar RNAs (snoRNAs). However, at present, the distinct role of key snoRNAs in ribosome biogenesis remains poorly understood in higher plants. Here we report that a previously uncharacterized C (RUGAUGA)/D (CUGA) type snoRNA, HIDDEN TREASURE 2 (HID2), acts as an important regulator of ribosome biogenesis through a snoRNA–rRNA interaction. Nucleolus-localized HID2 is actively expressed in Arabidopsis proliferative tissues, whereas defects in HID2 cause a series of developmental defects reminiscent of ribosomal protein mutants. HID2 associates with the precursor 45S rRNA and promotes the efficiency and accuracy of pre-rRNA processing. Intriguingly, disrupting HID2 in Arabidopsis appears to impair the integrity of 27SB, a key pre-rRNA intermediate that generates 25S and 5.8S rRNA and is known to be vital for the synthesis of the 60S large ribosomal subunit and also produces an imbalanced ribosome profile. Finally, we demonstrate that the antisense-box of HID2 is both functionally essential and highly conserved in eukaryotes. Overall, our study reveals the vital and possibly conserved role of a snoRNA in monitoring the efficiency of pre-rRNA processing during ribosome biogenesis.


2013 ◽  
Vol 57 (4) ◽  
pp. 1632-1637 ◽  
Author(s):  
Ward Rodgers ◽  
Ashley D. Frazier ◽  
W. Scott Champney

ABSTRACTThe continuing increase in antibiotic-resistant microorganisms is driving the search for new antibiotic targets and improved antimicrobial agents. Ketolides are semisynthetic derivatives of macrolide antibiotics, which are effective against certain resistant organisms. Solithromycin (CEM-101) is a novel fluoroketolide with improved antimicrobial effectiveness. This compound binds to the large 50S subunit of the ribosome and inhibits protein biosynthesis. Like other ketolides, it should impair bacterial ribosomal subunit formation. This mechanism of action was examined in strains ofStreptococcus pneumoniae,Staphylococcus aureus, andHaemophilus influenzae. The mean 50% inhibitory concentrations (IC50s) for solithromycin inhibition of cell viability, protein synthesis, and growth rate were 7.5, 40, and 125 ng/ml forStreptococcus pneumoniae,Staphylococcus aureus, andHaemophilus influenzae, respectively. The net formation of the 50S subunit was reduced in all three organisms, with IC50s similar to those given above. The rates of 50S subunit formation measured by a pulse-chase labeling procedure were reduced by 75% in cells growing at the IC50of solithromycin. Turnover of 23S rRNA was stimulated by solithromycin as well. Solithromycin was found to be a particularly effective antimicrobial agent, with IC50s comparable to those of telithromycin and significantly better than those of azithromycin and clarithromycin in these three microorganisms.


2002 ◽  
Vol 22 (12) ◽  
pp. 4101-4112 ◽  
Author(s):  
Nenad Tomasevic ◽  
Brenda A. Peculis

ABSTRACT U8 snoRNA plays a unique role in ribosome biogenesis: it is the only snoRNA essential for maturation of the large ribosomal subunit RNAs, 5.8S and 28S. To learn the mechanisms behind the in vivo role of U8 snoRNA, we have purified to near homogeneity and characterized a set of proteins responsible for the formation of a specific U8 RNA-binding complex. This 75-kDa complex is stable in the absence of added RNA and binds U8 with high specificity, requiring the conserved octamer sequence present in all U8 homologues. At least two proteins in this complex can be cross-linked directly to U8 RNA. We have identified the proteins as Xenopus homologues of the LSm (like Sm) proteins, which were previously reported to be involved in cytoplasmic degradation of mRNA and nuclear stabilization of U6 snRNA. We have identified LSm2, -3, -4, -6, -7, and -8 in our purified complex and found that this complex associates with U8 RNA in vivo. This purified complex can bind U6 snRNA in vitro but does not bind U3 or U14 snoRNA in vitro, demonstrating that the LSm complex specifically recognizes U8 RNA.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1035 ◽  
Author(s):  
Sophie Sleiman ◽  
Francois Dragon

Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson–Gilford progeria syndrome.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3438-3438
Author(s):  
Nicholas Burwick ◽  
Scott Coats ◽  
Akiko Shimamura

Abstract Abstract 3438 Shwachman Diamond syndrome (SDS) is an autosomal recessive marrow failure syndrome with a predisposition to leukemia. Over 90% of SDS patients harbor biallelic mutations in the SBDS gene. SBDS has been implicated in several cellular functions including ribosome biogenesis and mitotic spindle stabilization. Deletion of SBDS orthologues in yeast results in a severe slow growth phenotype and depressed polysomes. Homozygous deletion of Sbds in murine models results in early embryonic lethality, while conditional deletion of Sbds in mouse liver demonstrates accumulation of 40S and 60S subunits and halfmer formation consistent with impaired ribosome joining. SBDS facilitates the release of eIF6, a factor that prevents ribosome joining. The dramatic phenotypic and polysome changes noted in these experimental models were not observed in cells derived from SDS patients. SDS patient cells have only a mildly reduced growth rate compared to heatlhy controls, and polysome profiles do not demonstrate depressed polysomes or halfmer formation. Since complete abrogation of SBDS expression is lethal and biallelic null mutations in SBDS have not been reported, we examined the role of SBDS and eIF6 in SDS patients and human cell models. We first investigated whether ribosome subunit homeostasis is impaired in SDS patient cells. We find that the 60S:40S ribosomal subunit ratio is consistently reduced in bone marrow stromal cells from SDS patients of different genotypes (n=4). This impairment in 60S:40S ratio is demonstrated in both SDS patient stromal cells and patient lymphoblasts. Stable lentiviral knockdown of SDS in normal marrow stromal cells recapitulates the reduction in 60S:40S ratio. SBDS and eIF6 co-sediment in polysome gradients of human SDS cells. This co-sedimentation is specific for the 60S ribosomal subunit. Since eIF6 has a role as an anti-joining factor, we next developed an in vitro assay to test for ribosome subunit joining in human cells. In this assay, we validate that over-expression of eIF6 results in reduced ribosome joining, and eIF6 knockdown promotes ribosome joining. Moreover, we find that SDS patient stromal cells and patient lymphoblasts both demonstrate impaired ribosome subunit joining, compared with healthy controls. Importantly, the addition of wild type SBDS or depletion of eIF6 improve ribosome joining in SDS patient cells. We demonstrate that the amino terminal sequences of SBDS are necessary but not sufficient for the association of SBDS with the 60S ribosomal subunit. Insertion of a patient-derived N-terminal SBDS point mutation also results in decreased association of SBDS with the 60S ribosomal subunit. These structure-function studies may help to inform genotype:phenotype correlations in SDS. The role of defective ribosome joining in promoting the SDS hematopoietic phenotype is of particular interest. Ongoing studies are interrogating the role of eIF6 modulation on the hematopoietic phenotype in SBDS- depleted cells. Insights garnered from these experiments will help inform the development of novel agents to improve the hematopoetic defect in human SDS. Disclosures: No relevant conflicts of interest to declare.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4418
Author(s):  
Hsueh-Wei Tseng ◽  
Tobias Baumann ◽  
Huan Sun ◽  
Yane-Shih Wang ◽  
Zoya Ignatova ◽  
...  

In protein engineering and synthetic biology, Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRS), with its cognate tRNAPyl, is one of the most popular tools for site-specific incorporation of non-canonical amino acids (ncAAs). Numerous orthogonal pairs based on engineered MmPylRS variants have been developed during the last decade, enabling a substantial genetic code expansion, mainly with aliphatic pyrrolysine analogs. However, comparatively less progress has been made to expand the substrate range of MmPylRS towards aromatic amino acid residues. Therefore, we set to further expand the substrate scope of orthogonal translation by a semi-rational approach; redesigning the MmPylRS efficiency. Based on the randomization of residues from the binding pocket and tRNA binding domain, we identify three positions (V401, W417 and S193) crucial for ncAA specificity and enzyme activity. Their systematic mutagenesis enabled us to generate MmPylRS variants dedicated to tryptophan (such as β-(1-Azulenyl)-l-alanine or 1-methyl-l-tryptophan) and tyrosine (mainly halogenated) analogs. Moreover, our strategy also significantly improves the orthogonal translation efficiency with the previously activated analog 3-benzothienyl-l-alanine. Our study revealed the engineering of both first shell and distant residues to modify substrate specificity as an important strategy to further expand our ability to discover and recruit new ncAAs for orthogonal translation


Sign in / Sign up

Export Citation Format

Share Document