scholarly journals The Effect of Optogenetically Activating Glia on Neuronal Function

Neuroglia ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 57-67
Author(s):  
Cecilia Pankau ◽  
Shelby McCubbin ◽  
Robin L. Cooper

Glia, or glial cells, are considered a vital component of the nervous system, serving as an electrical insulator and a protective barrier from the interstitial (extracellular) media. Certain glial cells (i.e., astrocytes, microglia, and oligodendrocytes) within the CNS have been shown to directly affect neural functions, but these properties are challenging to study due to the difficulty involved with selectively-activating specific glia. To overcome this hurdle, we selectively expressed light-sensitive ion channels (i.e., channel rhodopsin, ChR2-XXL) in glia of larvae and adult Drosophila melanogaster. Upon activation of ChR2, both adults and larvae showed a rapid contracture of body wall muscles with the animal remaining in contracture even after the light was turned off. During ChR2-XXL activation, electrophysiological recordings of evoked excitatory junction potentials within body wall muscles of the larvae confirmed a train of motor nerve activity. Additionally, when segmental nerves were transected from the CNS and exposed to light, there were no noted differences in quantal or evoked responses. This suggests that there is not enough expression of ChR2-XXL to influence the segmental axons to detect in our paradigm. Activation of the glia within the CNS is sufficient to excite the motor neurons.

1996 ◽  
Vol 76 (5) ◽  
pp. 3178-3195 ◽  
Author(s):  
R. M. Johnston ◽  
R. B. Levine

1. Larval crawling is a bilaterally symmetrical behavior that involves an anterior moving wave of motor activity in the body wall muscles in conjunction with sequential movements of the abdominal prolegs and thoracic legs. The purpose of this study was to determine whether the larval CNS by itself and without phasic sensory feedback was capable of producing patterned activity associated with crawling. To establish the extent of similarity between the output of the isolated nerve cord and crawling, the motor activity produced in isolated larval nerve cords was compared with the motor activity from freely crawling larvae. 2. When exposed to the muscarinic receptor agonist pilocarpine (1.0 mM), isolated larval nerve cords produced long-lasting rhythmic activity in the motor neurons that supply the thoracic leg, abdominal body wall, and abdominal proleg muscles. The rhythmic activity evoked by pilocarpine was abolished reversibly and completely by bath application of the muscarinic-receptor antagonist atropine (0.01 mM) in conjunction with pilocarpine (1.0 mM), suggesting that the response was mediated by muscarinic-like acetylcholine receptors. 3. Similar to crawling in intact animals, the evoked activity in isolated nerve cords involved bilaterally symmetrical motor activity that progressed from the most posterior abdominal segment to the most anterior thoracic segment. The rhythmic activity in thoracic leg, abdominal proleg, and abdominal body wall motor neurons showed intrasegmental and intersegmental cycle-to-cycle coupling. The average cycle period for rhythmic activity in the isolated nerve cord was approximately 2.5 times slower than the cycle period for crawling in intact larvae, but not more variable. 4. Like crawling in intact animals, in isolated nerve cords, bursting activity in the dorsal body wall motor neurons occurred before activity in ventral/lateral body wall motor neurons within an abdominal segment. The evoked bursting activity recorded from the proleg nerve was superimposed on a high level of tonic activity. 5. In isolated nerve cords, bursts of activity in the thoracic leg levator/extensor motor neurons alternated with bursts of activity in the depressor/flexor motor neurons. The burst duration of the levator/extensor activity was brief and remained relatively steady as cycle period increased. The burst duration of the depressor/ flexor activity occupied the majority of an average cycle and increased as cycle period increased. The phase of both levator/extensor motor nerve activity and depressor/flexor motor nerve activity remained relatively stable over the entire range of cycle periods. The timing and patterning of thoracic leg motor neuron activity in isolated nerve cords quantitatively resembled thoracic leg motor activity in freely crawling larvae. 6. The rhythmic motor activity generated by an isolated larval nerve cord resembled a slower version of normal crawling in intact larvae. Because of the many similarities between activity induced in the isolated nerve cord and the muscle activity and movements of thoracic and abdominal segments during crawling, we concluded that central mechanisms can establish the timing and patterning of the crawling motor pattern and that crawling may reflect the output of a central pattern generating network.


2006 ◽  
Vol 105 (4) ◽  
pp. 602-609 ◽  
Author(s):  
Cristina Aubá ◽  
Bernardo Hontanilla ◽  
Juan Arcocha ◽  
Óscar Gorría

Object The clinical use of nerve allografts combined with immunosuppressant therapy has become a genuine possibility that could supersede the classic use of autografts. However, contradictory data have been reported on whether immunosuppressant therapy should be temporarily administered. The purpose of this study was to compare the nerve regeneration obtained using ulnar nerve allografts in nonhuman primates temporarily treated with FK506 (tacrolimus) with that obtained using nerve autografts. Methods Four-centimeter nerve autografts or allografts were placed in the distal ulnar motor nerve of eight monkeys. The FK506 was temporarily administered to the animals of the allograft group for 2 months. At periods of 3, 5, and 8 months postsurgery, quantitative electrophysiological recordings were obtained to estimate muscle response. A quantitative analysis of ulnar motor neurons in the spinal cord was performed and axons were counted stereologically. No statistically significant differences were found in the neuronal and axonal counts between autograft and allograft groups at 8 months. The electrophysiological studies showed no differences relative to the amplitude, but the autograft group presented with a greater nerve conduction velocity (NCV). However, no statistically significant differences were found between the number of neurons and distal axonal counts in the two groups. Conclusions Nerve regeneration through cold-preserved allografts in a primate model temporarily treated with FK506 was similar to that obtained using nerve autografts, in terms of neuronal and axonal counts. Nevertheless, temporary immunosuppression produced lower NCV when allografts were used, with less maturation of the myelinated fibers, which indicated that a partial rejection had taken place.


2000 ◽  
Vol 78 (9) ◽  
pp. 1626-1639 ◽  
Author(s):  
G O Mackie ◽  
R C Wyeth

The behaviour of Chelyosoma productum and Corella inflata (Ascidiacea) was studied in normal and deganglionated animals. Chelyosoma productum lived for over a year after deganglionation and the ganglion did not regenerate. Electrophysiological recordings were made from semi-intact preparations. Responses to stimulation and spontaneous activity continued to be transmitted through the body wall and branchial sac after deganglionation. Spread was slow, decremental, and facilitative. Treatment with >10 µg·mL-1 d-tubocurarine abolished all responses, indicating that nerves mediate conduction of excitation after deganglionation. Histological study using cholinesterase histochemistry and immunolabelling with antisera against tubulin and gonadotropin-releasing hormone showed no evidence of a peri pheral nerve net in regions showing conduction, contrary to previous claims. The cell bodies of the motor neurones were found to lie entirely within the ganglion or its major roots. Their terminal branches intermingled to form netlike arrays. Sensory neurons were identified with cell bodies in the periphery, in both the body wall and the branchial sac. Their processes also intermingled in netlike arrays before entering nerves going to the ganglion. It is concluded that the "residual" innervation that survives deganglionation is composed of either interconnected motor nerve terminals, interconnected sensory neurites, or some combination of the two. In re-inventing the nerve net, ascidians show convergent evolution with sea anemones, possibly as an adaptation to a sessile existence.


2005 ◽  
Vol 94 (5) ◽  
pp. 3563-3572 ◽  
Author(s):  
Markus K. Klose ◽  
David Chu ◽  
Chengfeng Xiao ◽  
Laurent Seroude ◽  
R. Meldrum Robertson

Maintaining the competence of locomotor circuitry under stressful conditions can benefit organisms by enabling locomotion to more tolerable microhabitats. We show that prior heat shock protects locomotion and the locomotor central pattern generator of larval Drosophila against subsequent hyperthermic stress. We combined molecular genetic, electrophysiological, and behavioral techniques to investigate heat shock–mediated thermoprotection. Prior heat shock increased the distance traveled by larvae during hyperthermia before failure. The frequency of the rhythm of peristaltic locomotor contractions and the velocity of locomotion were both less thermosensitive after heat shock and were less susceptible to failure at high temperatures. Rhythmic coordinated motor patterns, recorded intracellularly as excitatory junction potentials in body wall muscles of dissected preparations, were centrally generated because patterns could still be generated in the absence of sensory feedback (sensory function disrupted with shibire). Prior heat shock protected central circuit operation during hyperthermic stress by increasing the temperature at which it failed. Overexpression of Hsp70 after a heat shock using transgenic flies ( traII) did not enhance thermoprotection, as expected, but had deleterious effects on parameters of behavior.


2019 ◽  
Author(s):  
Negin Azimi Hashemi ◽  
Amelie C. F. Bergs ◽  
Rebecca Scheiwe ◽  
Wagner Steuer Costa ◽  
Jana F. Liewald ◽  
...  

AbstractGenetically encoded voltage indicators (GEVIs) based on microbial rhodopsins utilize the voltage-sensitive fluorescence of the all-trans retinal (ATR) cofactor, while in electrochromic (eFRET) sensors, donor fluorescence drops when the rhodopsin acts as depolarization-sensitive acceptor. We systematically assessed Arch(D95N), Archon, and QuasAr, as well as the eFRET sensors MacQ-mCitrine and QuasAr-mOrange, in C. elegans. ATR-bearing rhodopsins reported on voltage changes in body wall muscles (BWMs) and the pharynx, the feeding organ, where Arch(D95N) showed ca. 125 % ΔF/F increase per 100 mV. The ATR fluorescence is very dim, however, using the retinal analog dimethylaminoretinal (DMAR), it was boosted 250-fold. eFRET sensors provided sensitivities of 45 % to 78 % ΔF/F per 100 mV, induced by BWM action potentials (APs). All sensors reported differences in muscle depolarization induced by a voltage-gated Ca2+-channel mutant. Optogenetically evoked de-or hyperpolarization of motor neurons increased or eliminated AP activity and caused a rise or drop in BWM sensor fluorescence. Last, we could analyze voltage dynamics across the entire pharynx, showing uniform depolarization but compartmentalized repolarization of anterior and posterior parts. Our work establishes all-optical, non-invasive electrophysiology in intact C. elegans.


1960 ◽  
Vol s3-101 (54) ◽  
pp. 149-176
Author(s):  
R. B. CLARK ◽  
M. E. CLARK

Nephtys lacks circular body-wall muscles. The chief antagonists of the longitudinal muscles are the dorso-ventral muscles of the intersegmental body-wall. The worm is restrained from widening when either set of muscles contracts by the combined influence of the ligaments, some of the extrinsic parapodial muscles, and possibly, to a limited extent, by the septal muscles. Although the septa are incomplete, they can and do form a barrier to the transmission of coelomic fluid from one segment to the next under certain conditions, particularly during eversion of the proboscis. Swimming is by undulatory movements of the body but the distal part of the parapodia execute a power-stroke produced chiefly by the contraction of the acicular muscles. It is suspected that the extrinsic parapodial muscles, all of which are inserted in the proximal half of the parapodium, serve to anchor the parapodial wall at the insertion of the acicular muscles and help to provide a rigid point of insertion for them. Burrowing is a cyclical process involving the violent eversion of the proboscis which makes a cavity in the sand. The worm is prevented from slipping backwards by the grip the widest segments have on the sides of the burrow. The proboscis is retracted and the worm crawls forward into the cavity it has made. The cycle is then repeated. Nephtys possesses a unique system of elastic ligaments of unusual structure. The anatomy of the system is described. The function of the ligaments appears to be to restrain the body-wall and parapodia from unnecessary and disadvantageous dilatations during changes of body-shape, and to serve as shock-absorbers against the high, transient, fluid pressures in the coelom, which are thought to accompany the impact of the proboscis against the sand when the worm is burrowing. From what is known of its habits, Nephtys is likely to undertake more burrowing than most other polychaetes.


2012 ◽  
Vol 107 (5) ◽  
pp. 1356-1365 ◽  
Author(s):  
Subhashini Srinivasan ◽  
Kimberley Lance ◽  
Richard B. Levine

Potassium currents play key roles in regulating motoneuron activity, including functional specializations that are important for locomotion. The thoracic and abdominal segments in the Drosophila larval ganglion have repeated arrays of motoneurons that innervate body-wall muscles used for peristaltic movements during crawling. Although abdominal motoneurons and their muscle targets have been studied in detail, owing, in part, to their involvement in locomotion, little is known about the cellular properties of motoneurons in thoracic segments. The goal of this study was to compare firing properties among thoracic motoneurons and the potassium currents that influence them. Whole-cell, patch-clamp recordings performed from motoneurons in two thoracic and one abdominal segment revealed both transient and sustained voltage-activated K+ currents, each with Ca++-sensitive and Ca++-insensitive [A-type, voltage-dependent transient K+ current (IAv)] components. Segmental differences in the expression of voltage-activated K+ currents were observed. In addition, we demonstrate that Shal contributes to IAv currents in the motoneurons of the first thoracic segment.


2016 ◽  
Vol 74 (10) ◽  
pp. 849-854
Author(s):  
Paulo Victor Sgobbi de Souza ◽  
Wladimir Bocca Vieira de Rezende Pinto ◽  
Flávio Moura Rezende Filho ◽  
Acary Souza Bulle Oliveira

ABSTRACT Motor neuron disease is one of the major groups of neurodegenerative diseases, mainly represented by amyotrophic lateral sclerosis. Despite wide genetic and biochemical data regarding its pathophysiological mechanisms, motor neuron disease develops under a complex network of mechanisms not restricted to the unique functions of the alpha motor neurons but which actually involve diverse functions of glial cell interaction. This review aims to expose some of the leading roles of glial cells in the physiological mechanisms of neuron-glial cell interactions and the mechanisms related to motor neuron survival linked to glial cell functions.


2001 ◽  
Vol 86 (6) ◽  
pp. 2845-2855 ◽  
Author(s):  
Lyle E. Fox ◽  
Philip E. Lloyd

Many neuromuscular and central synapses exhibit activity-dependent plasticity. The sustained high-frequency firing needed to elicit some forms of plasticity are similar to those often required to release neuropeptides. We wanted to determine if neuropeptide release could contribute to post-tetanic potentiation (PTP) and chose neuromuscular synapses in buccal muscle I3a to explore this issue. This muscle is innervated by two motor neurons (termed B3 and B38) that show PTP in response to tetanic stimulation. B3 and B38 use glutamate as their fast transmitter but express different modulatory neuropeptides. B3 expresses FMRFamide, a neuropeptide that only slightly increases its own excitatory junction potentials (EJPs). B38 expresses the small cardioactive peptide (SCP), a neuropeptide that dramatically increases its own EJPs. It was our hypothesis that SCP released from B38's terminals during tetanic stimulation mediated a component of PTP for B38. Because no antagonist to SCP currently exists, we used several indirect approaches to test this hypothesis. First, we studied the effects of increasing stimulation frequency during the tetanus or lowering temperature on PTP. Both of these changes are known to dramatically increase SCP release. We found that increasing the frequency of stimulation increased PTP for both neurons; however, the effects were larger for B38. Decreasing the temperature tended to reduce PTP for B3, while increasing PTP for B38. These results were consistent with known properties of SCP release from B38. Next we selectively superfused the neuromuscular synapses with exogenous SCP to determine if this would occlude the effects of SCP released from B38 during a tetanus. We found that exogenous SCP dramatically reduced PTP for B38 but had little effect on PTP for B3. Thus our results support the hypothesis that physiological stimulation of B38 elicits PTP that is predominantly dependent on the release of SCP from its own terminals. They also demonstrate that the mechanisms underlying PTP can be very different for two motor neurons innervating the same target muscle.


Sign in / Sign up

Export Citation Format

Share Document