scholarly journals Plasma Cholesterol-Lowering Activity of Soybean Germ Phytosterols

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2784 ◽  
Author(s):  
Hanyue Zhu ◽  
Jingnan Chen ◽  
Zouyan He ◽  
Wangjun Hao ◽  
Jianhui Liu ◽  
...  

Soybean germ phytosterols (SGP) largely exist in soybean germ oil. Our previous study demonstrated that soybean germ oil was effective in reducing plasma cholesterol. However, it remains unknown if its phytosterols are the active ingredients responsible for the plasma cholesterol-lowering activity. The present study aimed to test the effect of SGP on plasma cholesterol and to investigate its associated underlying mechanisms using hamsters as animal model. Male hamsters (n = 40) were randomly divided into five groups (n = 8/group) and fed one of the five diets: a non-cholesterol diet (NCD), a high cholesterol diet (HCD), a HCD diet containing 0.5% cholestyramine (PC), and two HCD diets containing 0.1% (LP) and 0.2% (HP) SGP, respectively, for six weeks. Results showed that SPG reduced plasma cholesterol level in a dose-dependent manner, whereas it dose-dependently increased the excretion of both fecal neutral and acidic sterols. SGP was also effective in displacing cholesterol from micelles. It was concluded that SGP possessed hypocholesterolemic activity, likely by inhibiting cholesterol absorption in the intestine and promoting fecal sterol excretion.

2014 ◽  
Vol 62 (43) ◽  
pp. 10515-10521 ◽  
Author(s):  
Lin Lei ◽  
Yuwei Liu ◽  
Xiaobo Wang ◽  
Rui Jiao ◽  
Ka Ying Ma ◽  
...  

Author(s):  
Suresh C. Joshi ◽  
Pratibha K. Jain ◽  
Priyanka Sharma

Objective: The present study was designed to investigate the antihyperlipidemic and anti-atherosclerotic activity of 70% methanolic crude extract of Cinnamomum verum bark in high cholesterol-fed diet rabbits.Methods: C. verum extract was administered at a dose level of 200 mg/kg and 300 mg/kg (p. o) daily for 120 d to cholesterol-fed rabbits. Lipid profile in serum and histological changes in heart and aorta were investigated. The statistical analysis was carried out by student’s ‘t’test.Results: Plant extract showed a significant decrease in the levels of serum total cholesterol, triglycerides, phospholipids, LDL, VLDL (P ≤ 0.001) in a dose-dependent manner in treated animals. HDL ratio improved overwhelmingly as well as the marked decline was also noticed in the atherogenic index after administration with C. verum extract. Histopathological examinations demonstrated less cholesterol deposits in the aorta and significant increase in lumen size of coronary arteries of high cholesterol diet animals given C. verum compared to the high cholesterol diet animals not given C. verum supplement.Conclusion: The phytochemical analysis of methanol extracts indicated a strong presence of alkaloids, flavonoids, tannins, phenols, saponins and fatty acids may be responsible for the significant hypolipidaemic as well as antiatherosclerotic activity. Our study exhibited that the methanol extract of C. verum bark is a potent hypolipidaemic agent and decreased cholesterol deposition in the aorta and plaque formation process in the coronary artery of high cholesterol diet animals.


2019 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Chen Lei ◽  
Pan Xiang ◽  
Shen Yonggang ◽  
Song Kai ◽  
Zhong Xingguo ◽  
...  

The aim of this study was to determine whether polydatin, a glucoside of resveratrol isolated from the root of Polygonum cuspidatum, warranted development as a potential therapeutic for ameliorating the pain originating from gallbladder spasm disorders and the underlying mechanisms. Guinea pig gallbladder smooth muscles were treated with polydatin and specific inhibitors to explore the mechanisms underpinning polydatin-induced relaxation of carbachol-precontracted guinea pig gallbladder. Our results shown that polydatin relaxed carbachol-induced contraction in a dose-dependent manner through the nitric oxide/cyclic guanosine monophosphate/protein kinase G and the cyclic adenosine monophosphate/protein kinase A signaling pathways as well as the myosin light chain kinase and potassium channels. Our findings suggested that there was value in further exploring the potential therapeutic use of polydatin in gallbladder spasm disorders.


2019 ◽  
Vol 13 (1) ◽  
pp. 489-496 ◽  
Author(s):  
Jun Jiang ◽  
Nanyang Zhou ◽  
Pian Ying ◽  
Ting Zhang ◽  
Ruojia Liang ◽  
...  

AbstractEmodin, a major component of rhubarb, has anti-tumor effects in a variety of cancers, influencing multiple steps of tumor development through modulating several signaling pathways. The aim of this study is to examine the effect of emodin on cell apoptosis and explore the underlying mechanisms in human endometrial cancer cells. Here we report that emodin can inhibit KLE cell proliferation and induce apoptosis in a time- and dose-dependent manner. Western blot assay found that emodin was involved in MAPK and PI3K/Akt signaling pathways. Specifically, emodin significantly suppressed the phosphorylation of AKT, and enhanced the phosphorylation of MAPK pathways. Furthermore, the generation of reactive oxygen species (ROS) was up-regulated in KLE cells upon treatment with emodin, while the anti-oxidant agent N-acetyl cysteine (NAC) can inhibit emodin-induced apoptosis and promote the activation of AKT and Bcl-2. Taken together, we revealed that emodin may induce apoptosis in KLE cells through regulating the PI3K/AKT and MAPK signaling pathways, indicating the importance of emodin as an anti-tumor agent.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Li-Hua Mu ◽  
Li-Hua Wang ◽  
Teng-Fei Yu ◽  
Yu-Ning Wang ◽  
Hong Yan ◽  
...  

Triple-negative breast cancers (TNBCs) are associated with poor patient survival because of the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expressions. Our previous studies have shown that the triterpenoid saponin AG8 from Ardisia gigantifolia stapf. inhibits the proliferation of MDA-MB-231 cells. In this study, the effects of AG8 were further analyzed in different TNBC cell types: MDA-MB-231, BT-549, and MDA-MB-157 cells. AG8 inhibited the viability of MDA-MB-231, BT-549, and MDA-MB-157 cells in a dose-dependent manner and showed stronger cytotoxicity to African American (AA) and mesenchymal (M) subtypes than Caucasian (CA) and mesenchymal stem-like (MSL) subtypes, respectively. AG8 impaired the uptake of MitoTracker Red CMXRos by the mitochondria of TNBC cells in a dose-dependent manner, and this was recovered by N-acetyl-l-cysteine (NAC). AG8 affected GSH, SOD, and MDA levels of TNBC cells, but different TNBC subtypes had different sensitivities to AG8 and NAC. In addition, we found that AG8 increased the Bax/Bcl-2 ratio and the levels of cytoplasmic cytochrome c and significantly decreased phosphorylation of ERK and AKT in BT549 and MDA-MB-157 cells. AG8 elicited its anticancer effects through ROS generation, ERK and AKT activation, and by triggering mitochondrial apoptotic pathways in TNBC cells. AG8 had selective cytotoxic effects against the AA and M TNBC subtypes and markedly induced MDA-MB-157 (AA subtype) cell apoptosis through pathways that were not associated with ROS, which was different from the other two subtypes. The underlying mechanisms should be further investigated.


2010 ◽  
Vol 299 (5) ◽  
pp. G1012-G1022 ◽  
Author(s):  
Stephen D. Turley ◽  
Mark A. Valasek ◽  
Joyce J. Repa ◽  
John M. Dietschy

Cholesterol homeostasis in the enterocyte is regulated by the interplay of multiple genes that ultimately determines the net amount of cholesterol reaching the circulation from the small intestine. The effect of deleting these genes, particularly acyl CoA:cholesterol acyl transferase 2 (ACAT2), on cholesterol absorption and fecal sterol excretion is well documented. We also know that the intestinal mRNA level for adenosine triphosphate-binding cassette transporter A1 (ABCA1) increases in Acat2−/− mice. However, none of these studies has specifically addressed how ACAT2 deficiency impacts the relative proportions of esterified and unesterified cholesterol (UC) in the enterocyte and whether the concurrent loss of ABCA1 might result in a marked buildup of UC. Therefore, the present studies measured the expression of numerous genes and related metabolic parameters in the intestine and liver of ACAT2-deficient mice fed diets containing either added cholesterol or ezetimibe, a selective sterol absorption inhibitor. Cholesterol feeding raised the concentration of UC in the small intestine, and this was accompanied by a significant reduction in the relative mRNA level for Niemann-Pick C1-like 1 (NPC1L1) and an increase in the mRNA level for both ABCA1 and ABCG5/8. All these changes were reversed by ezetimibe. When mice deficient in both ACAT2 and ABCA1 were fed a high-cholesterol diet, the increase in intestinal UC levels was no greater than it was in mice lacking only ACAT2. This resulted from a combination of compensatory mechanisms including diminished NPC1L1-mediated cholesterol uptake, increased cholesterol efflux via ABCG5/8, and possibly rapid cell turnover.


Author(s):  
Gururaja G. M. ◽  
Deepak Mundkinajeddu ◽  
Senthil Kumar A. ◽  
Joshua Allan J. ◽  
Shekhar M. Dethe ◽  
...  

Objective: Moringa oleifera Lam. (Moringaceae), a small rapid growing, evergreen, deciduous tree is an important medicinal plant. Leaves and fruits of this plant are used for various ailments, as a nutritional supplement and also as vegetables. The current study involves in the determination of best combination of the cholesterol-lowering potential of a blend of methanol extracts of M. oleifera leaf and fruits, developed based on in vitro FIC index studies and evaluate the combination of this extracts in hypercholesterolemic animal models.Methods: Leaf and fruit methanol extracts and their combinations were tested in in vitro lipase inhibition assay to determine the best combination using fractional inhibitory concentration (FIC) index. Hypercholesterolemia was induced with Triton WR-1339 (a non-ionic detergent) and with high cholesterol diet for acute and chronic model respectively and the cholesterol-lowering effect of 1:1 blend of M. oleifera leaf and fruits methanol extracts was evaluated.Results: The FIC index values indicated that M. oleifera leaf and fruit extracts blended in 1:1 proportion was the best combination in in vitro lipase inhibition assay. This blend, when evaluated in vivo, showed a significant decrease in serum total cholesterol level from 24 h through 48 h in triton model. In high cholesterol diet model, the extract blend showed a significant reduction in serum triglycerides levels at 3 and 6 w of treatment.Conclusion: The results indicate that the blend of M. oleifera at the tested dose could be lowering cholesterol and triglyceride levels by inhibiting the absorption of cholesterol and can be developed as a standardized blend for dietary supplement market.


Sign in / Sign up

Export Citation Format

Share Document