scholarly journals Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence

Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 228 ◽  
Author(s):  
Anne-Laure Tardy ◽  
Etienne Pouteau ◽  
Daniel Marquez ◽  
Cansu Yilmaz ◽  
Andrew Scholey

Vitamins and minerals are essential to humans as they play essential roles in a variety of basic metabolic pathways that support fundamental cellular functions. In particular, their involvement in energy-yielding metabolism, DNA synthesis, oxygen transport, and neuronal functions makes them critical for brain and muscular function. These, in turn, translate into effects on cognitive and psychological processes, including mental and physical fatigue. This review is focused on B vitamins (B1, B2, B3, B5, B6, B8, B9 and B12), vitamin C, iron, magnesium and zinc, which have recognized roles in these outcomes. It summarizes the biochemical bases and actions of these micronutrients at both the molecular and cellular levels and connects them with cognitive and psychological symptoms, as well as manifestations of fatigue that may occur when status or supplies of these micronutrients are not adequate.

2021 ◽  
Vol 15 (12) ◽  
pp. 3143-3143
Author(s):  
Naveed Shuja

The properties of a substance are determined by the structure of its component molecules. Ascorbic acid occurs abundantly in fresh fruit, especially blackcurrants, citrus fruit and strawberries, and in most fresh vegetables; good sources are broccoli and peppers. It is destroyed by heat and is not well stored in the body3. Ascorbic acid is a good reducing agent and facilitates many metabolic reaction and repair processes. In pharmaceutical preparations and fruit juices, ascorbic acid is readily separated from other compounds by TLC on silica gel and quantitated directly by absorption at 254nm. Serum and plasma may be deproteinized with twice the volume of methanol or ethanol.


Author(s):  
Arun Kumar ◽  
Reena V Saini ◽  
Adesh K Saini

Ascorbic acid (AA) or Vitamin C is an important antioxidant which participates in numerous cellular functions. Although in human plasma its concentration is in micromolars but it reaches millimolar concentrations in most of the human tissues. The high ascorbate cellular concentrations are generated and maintained by a specific sodium-dependent Vitamin C transporter type 2 (SVCT2, member of Slc23 family). Metabolic processes recycle Vitamin C from its oxidized forms (ascorbate) inside the cells. AA concentration is highest in the neurons of the central nervous system (CNS) of mammals, and deletion of its transporter affects mice brain and overall survival. In the CNS, intracellular ascorbate serves several functions including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. SVCT2 maintains neuronal ascorbate content in CNS which has relevance for neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s disease. As ascorbate supplements decrease infarct size in ischemia-reperfusion injury and protect neurons from oxidative damage, it is a vital dietary antioxidant. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis in CNS and the extent to which ascorbate affects brain function as an antioxidant.


2007 ◽  
Vol 3 (3) ◽  
pp. 154-158
Author(s):  
Mark A. Moyad ◽  
Angelica S. Vrablic ◽  
Maile A. Combs

2020 ◽  
Vol 12 (532) ◽  
pp. eaay8707 ◽  
Author(s):  
Alessandro Magrì ◽  
Giovanni Germano ◽  
Annalisa Lorenzato ◽  
Simona Lamba ◽  
Rosaria Chilà ◽  
...  

Vitamin C (VitC) is known to directly impair cancer cell growth in preclinical models, but there is little clinical evidence on its antitumoral efficacy. In addition, whether and how VitC modulates anticancer immune responses is mostly unknown. Here, we show that a fully competent immune system is required to maximize the antiproliferative effect of VitC in breast, colorectal, melanoma, and pancreatic murine tumors. High-dose VitC modulates infiltration of the tumor microenvironment by cells of the immune system and delays cancer growth in a T cell–dependent manner. VitC not only enhances the cytotoxic activity of adoptively transferred CD8 T cells but also cooperates with immune checkpoint therapy (ICT) in several cancer types. Combination of VitC and ICT can be curative in models of mismatch repair–deficient tumors with high mutational burden. This work provides a rationale for clinical trials combining ICT with high doses of VitC.


Author(s):  
Claire McKenzie ◽  
Kristina Bennert ◽  
David Kessler ◽  
Alan Montgomery

Distress and depression often go unrecognised in people with diabetes. In this article, I present an Interpretative Phenomenological Analysis (IPA) of the lived experience of people with Type 2 diabetes, based on individual in-depth interviews with 10 patients. The purpose of this research was to gain a deeper understanding of these psychological symptoms through a detailed examination of how patients interpret and respond to their experience of the condition. I propose a revised model for the connection between the disease of diabetes and patients’ lived experiences of illness, as one of embodied coexistence rather than relation. Through my analysis, I identify the psychological processes that might need to be addressed in an effective preventative support system.


2018 ◽  
Author(s):  
Wolfram Liebermeister

AbstractCells need to make an efficient use of metabolites, proteins, energy, membrane space, and time, and resource allocation is also an important aspect of metabolism. How, for example, should cells distribute their protein budget between different cellular functions, e.g. different metabolic pathways, to maximise growth? Cellular resource allocation can be studied by combining biochemical network models with optimality problems that choose metabolic states by their cost and benefit. Various types of resource allocation problems have been proposed. The underlying mechanistic models may describe different cellular systems (e.g. metabolic pathways, networks, or compromises between metabolism and protein production) on different level of detail and using different mathematical formulations (e.g. stoichiometric or kinetic). The optimality problems may use metabolite levels, enzyme levels, or fluxes as variables, assume different cost or benefit functions, and describe different kinds of trade-offs, in which cell variables are either constrained or treated as optimisation objectives. Due to all these differences, optimality problems may be hard to compare or combine. To bring them under one umbrella, I show that they can be derived from a common framework, and that their optimality conditions all show the same mathematical form. This unified view on metabolic optimality problems can be used to justify and combine various modelling approaches and biochemical optimality problems.


2019 ◽  
Vol 3 (5) ◽  

Many women in their reproductive years experience cyclical physical, emotional & psychological symptoms in the week prior to menses or during luteal phase of menstrual cycle. PMS affects about 5-8 % of women and most of them meet the criteria for premenstrual dysphoric disorder (PMDD). The etiology remains unknown and is complex and multifactorial. The diagnosis of PMS is solely based on signs and symptoms and no specific diagnostic tests to confirm the diagnosis. Numerous treatment modalities are available but only few are supported by clinical evidence. The article describes the disorder, with brief account of the theories for the underlying causes of PMS. It discusses the array of non pharmacological and pharmacological strategies available with stress on individualized treatment according to symptom profile.


Sign in / Sign up

Export Citation Format

Share Document