scholarly journals The Effect of Acute Caffeine Ingestion on Cognitive Dual Task Performance during Assessment of Static and Dynamic Balance in Older Adults

Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3653
Author(s):  
Jason Tallis ◽  
Chelsea Bradford ◽  
Michael J. Duncan ◽  
Sheila Leddington-Wright ◽  
Matthew F. Higgins ◽  
...  

The present work aimed to evaluate the effect of 3 mg·kg−1 caffeine consumption on the standing and dynamic balance performance of older adults and sought to establish if caffeine ingestion can modulate the influence of a cognitive dual task on balance performance. Twelve apparently healthy participants (8 females) aged >65 years (72 ± 3.7 years) completed the study. Bipedal postural sway, four square step test, timed up and go, Y-balance (anterior reach only) and force-time characteristics of sit-to-stand performance were used to assess standing and dynamic balance. Attention and working memory were assessed using a serial 3s and 7s subtraction task during seated rest and completion of the bipedal standing assessment and Y-balance test. This battery of assessments was completed on two separate occasions, once following the consumption of a non-ergogenic placebo and again following the consumption of 3 mg·kg−1 caffeine. The administration of treatments was randomised, counterbalanced and double-blind. Caffeine reduced performance in the bipedal standing balance assessments, evidenced by an increase in COPML, COPPath, COPVelocity. Performance during the dynamic balance tests was unaffected, other than rate of force development during the sit-to-stand, which was improved following caffeine ingestion. The introduction of a cognitive dual task had either limited effects, or improved facets of bipedal standing balance, whilst performance during the dynamic balance task was significantly reduced. In both balance assessments, there was evidence for a reduction in the performance of the cognitive task when both the balance and cognitive tests were performed simultaneously, with this effect not modulated by caffeine consumption. These findings refute the idea that caffeine ingestion may have positive effects on balance performance. However, despite a caffeine-induced reduction in bipedal standing balance, it is unlikely that caffeine ingestion would exacerbate fall risk given the limited effects in the dynamic balance tests. Future work should establish if these effects are generalisable to older frail participants and if caffeine can modulate the detrimental effects of an acute exercise bout on balance performance.

Author(s):  
Hamid Allahverdipour ◽  
Iman Dianat ◽  
Galavizh Mameh ◽  
Mohammad Asghari Jafarabadi

Objective The aim of this study is to examine the effects of cognitive and physical loads on dynamic and static balance performance of healthy older adults under single-, dual-, and multi-task conditions. Background Previous studies on postural control in older adults have generally used dual-task methodology, whereas less attention has been paid to multi-task performance, despite its importance in many daily and occupational activities. Method The effects of single versus combined (dual-task and multi-task) cognitive (to speak out the name of the weekdays in a reverse order) and physical (with three levels including handling weights of 1, 2, and 3 kg in each hand) loads on dynamic and static balance performance of 42 older adults (21 males and 21 females) aged ≥60 years were examined. Dynamic and static balance measures were evaluated using the Timed Up and Go (TUG) and stabilometer (sway index) tests, respectively. Results The TUG speed of female participants was generally slower than that of male participants. Age had no effect on balance performance measures. Under dual-task conditions, cognitive load decreased the dynamic balance performance, while the physical task levels had no effect. The dual-task conditions had no impact on the static balance performance. The effects of cognitive and physical loads on dynamic balance performance varied under dual- and multi-task conditions. Conclusion The findings highlight differences between dual- and multi-task protocols and add to the understanding of balance performance in older adults under cognitive and physical loads. Application The present study highlights differences between dual- and multi-task methodologies that need to be considered in future studies of balance and control in older adults.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ayelet Dunsky ◽  
Aviva Zeev ◽  
Yael Netz

Balance ability among the elderly is a key component in the activities of daily living and is divided into two types: static and dynamic. For clinicians who wish to assess the risk of falling among their elderly patients, it is unclear if more than one type of balance test can be used to measure their balance impairment. In this study, we examined the association between static balance measures and two dynamic balance field tests. One hundred and twelve community-dwelling older adults (mean age 74.6) participated in the study. They underwent the Tetrax static postural assessment and then performed the Timed Up and Go (TUG) and the Functional Reach (FR) Test as dynamic balance tests. In general, low-moderate correlations were found between the two types of balance tests. For women, age and static balance parameters explained 28.1–40.4% of the variance of TUG scores and 14.6–24% of the variance of FR scores. For men, age and static balance parameters explained 9.5–31.2% of the variance of TUG scores and 23.9–41.7% of the variance of FR scores. Based on our findings, it is suggested that a combination of both static and dynamic tests be used for assessing postural balance ability.


2009 ◽  
Vol 17 (4) ◽  
pp. 444-454 ◽  
Author(s):  
Marie-Louise Bird ◽  
Keith Hill ◽  
Madeleine Ball ◽  
Andrew D. Williams

This research explored the balance benefits to untrained older adults of participating in community-based resistance and flexibility programs. In a blinded randomized crossover trial, 32 older adults (M = 66.9 yr) participated in a resistance-exercise program and a flexibility-exercise program for 16 weeks each. Sway velocity and mediolateral sway range were recorded. Timed up-and-go, 10 times sit-to-stand, and step test were also assessed, and lower limb strength was measured. Significant improvements in sway velocity, as well as timed up-and-go, 10 times sit-to-stand, and step test, were seen with both interventions, with no significant differences between the 2 groups. Resistance training resulted in significant increases in strength that were not evident in the flexibility intervention. Balance performance was significantly improved after both resistance training and standing flexibility training; however, further investigation is required to determine the mechanisms responsible for the improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alex Rizzato ◽  
Antonio Paoli ◽  
Marta Andretta ◽  
Francesca Vidorin ◽  
Giuseppe Marcolin

The aim of this study was to investigate if the combination of static and dynamic postural balance assessments gives more accurate indications on balance performance among healthy older adults. We also aimed at studying the effect of a dual-task condition on static and dynamic postural balance control. Fifty-seven healthy older adults (age = 73.2 ± 5.0 year, height = 1.66 ± 0.08 m, and body mass = 72.8 ± 13.8 kg) completed the study. Static and dynamic balance were assessed both in single-task and dual-task conditions through a force plate and an oscillating platform. The dominant handgrip strength was also measured with a dynamometer. Pearson’s correlation revealed non-statistically significant correlations between static and dynamic balance performance. The dual-task worsened the balance performance more in the dynamic (+147.8%) than in the static (+25.10%, +43.45%, and +72.93% for ellipse area, sway path, and AP oscillations, respectively) condition (p < 0.001). A weak correlation was found between dynamic balance performance and handgrip strength both in the single (p < 0.05; r = −0.264) and dual (p < 0.05; r = −0.302) task condition. The absence of correlations between static and dynamic balance performance suggests including both static and dynamic balance tests in the assessment of postural balance alterations among older adults. Since cognitive-interference tasks exacerbated the degradation of the postural control performance, dual-task condition should also be considered in the postural balance assessment.


2021 ◽  
pp. 036354652199870
Author(s):  
Mark Matthews ◽  
William Johnston ◽  
Chris M. Bleakley ◽  
Richard J. Davies ◽  
Alan T. Rankin ◽  
...  

Background: Sports-related concussion is a worldwide problem. There is a concern that an initial concussion can cause prolonged subclinical disturbances to sensorimotor function that increase the risk of subsequent injury. The primary aim of this study was to examine whether a history of sports-related concussion has effects on static and dynamic balance performance in adolescent rugby players. Hypothesis: Dynamic balance would be worse in players with a history of concussion compared with those with no history of concussion. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Male adolescent rugby players aged 14 to 18 years from 5 schools were recruited before the start of the 2018-2019 playing season. Participants completed questionnaires and physical tests, including dynamic Y balance and single-leg static balance (eyes closed) tests, while performing single and dual tasks. Dynamic balance was assessed using inertial sensor instrumentation. Dependent variables were normalized reach distance and the sample entropy (SEn) of the 3 axes ( x, y, and z). Results: Of the 195 participants, 100 reported a history of concussion. Those with a history of concussion demonstrated higher SEn in all directions, with highest values during anterior (standardized mean difference [SMD], 0.4; 95% CI, 0.0-0.7; P = .027) and posteromedial (SMD, 0.5; 95% CI, 0.2-0.9; P = .004) reach directions compared with those with no history. There was no difference between groups (concussion history vs control) in traditional Y balance reach distances in the anterior or posteromedial directions or single-leg static balance during both single- ( P = .47) and dual-task ( P = .67) conditions. Conclusion: Adolescent rugby union athletes with a history of concussion had poorer dynamic balance during performance tasks compared with healthy controls. Static single-leg balance tests, either single or dual task, may not be sensitive enough to detect sensorimotor deficits in those with a history of concussion.


2019 ◽  
Author(s):  
Hamid Allahverdipour ◽  
Iman Dianat ◽  
Galavizh Mameh ◽  
mohammad Asghari Jafarabadi

Abstract Background: The aim of this study was to evaluate the effects of cognitive and physical loads on dynamic and static balance of older adults under single, dual and multi-task conditions. Methods: The effects of single versus combined (dual-task and multi-task) cognitive (to speak out the name of the weekdays in a reverse order) and physical (with three levels including handling weights of 1kg, 2kg and 3kg in each hand) loads on dynamic and static balance of 42 older adults (21 males and 21 females), aged ≥ 60 years were studied. Dynamic and static balance measures were evaluated using the Timed Up and Go (TUG) and stabilometer (sway index) tests, respectively. Results: The TUG speed of female participants was generally slower than that of male participants. Cognitive task influenced the participants’ dynamic balance during the dual-task conditions, while the static balance was not affected in this phase. The dynamic and static balance measures were more influenced when performing the multi-tasks than when doing the dual-tasks. The effects of various levels of physical demand on the dynamic balance varied greatly under dual- and multi-task conditions. Conclusions: The findings add to the understanding of the factors influencing the elderly balance and control under cognitive and physical functioning.


2014 ◽  
Vol 94 (5) ◽  
pp. 696-704 ◽  
Author(s):  
Yik Ming Choi ◽  
Fiona Dobson ◽  
Joel Martin ◽  
Kim L. Bennell ◽  
Rana S. Hinman

Background Hip osteoarthritis (OA) is a common musculoskeletal condition affecting older individuals. Clinical balance tests are frequently used to assess standing balance in these people. There is insufficient information regarding the reliability of these tests. Objective The aim of this study was to estimate reliability and measurement error of 4 common clinical standing balance tests in people with hip OA. Design A prospective study was conducted with repeated measures between 2 independent raters within 1 session and within 1 rater over a 1-week interval. Methods Thirty people with hip OA were evaluated. Reliability was estimated for the Four-Square Step Test, Step Test, Functional Reach Test, and Timed Single-Leg Stance Test using intraclass correlation coefficients (ICC [2,1]). Measurement error was expressed as standard error of measurement and minimal detectable change. Results The Four-Square Step Test, Step Test, and Timed Single-Leg Stance Test were sufficiently reliable between raters (ICC=.85–.94, lower 1-sided 95% confidence interval [95% CI]=.71–.89), whereas the Step Test (standing on study limb) and Timed Single-Leg Stance Test (standing on nonstudy limb) were sufficiently reliable within a rater over a 1-week interval (ICC=.91, lower 1-sided 95% CI=.80–.83). The Step Test (standing on study limb) and Timed Single-Leg Stance Test (standing on nonstudy limb) achieved optimal levels of reliability (ICC >.90, lower 1-sided 95% CI >.70), with acceptable measurement error (<10%) for clinical outcome measures. The Functional Reach Test was not sufficiently reliable. A ceiling effect was detected for the Timed Single-Leg Stance Test. Limitations Reliability was assessed only between 2 raters during a single session and within 1 rater over a 1-week interval, which limits generalizability. Conclusions The Step Test (standing on study limb) is recommended as a highly reliable test with acceptable measurement error for assessing standing balance in people with hip OA.


2009 ◽  
Vol 18 (2) ◽  
pp. 316-326 ◽  
Author(s):  
Lucinda E. Bouillon ◽  
Douglas K. Sklenka ◽  
Amy C. Driver

Context:Interval cycle training could positively influence dynamic balance in middle-aged women.Objective:To compare training effects of a strength ergometer and a standard ergometer on 3 dynamic balance tests.Design:Repeated measures.Setting:Laboratory.Participants:Seventeen women were randomly assigned to standard (n = 10) or strength cycle ergometry (n = 7). A control group consisted of 7 women.Intervention:Ergometry interval training (3 sessions/wk for 4 wk).Main Outcome Measures:Three balance tests—the Star Excursion Balance Test (SEBT), timed up-and-go (TUG), and four-square step test (FSST)—were performed at pretraining and 4 wk posttraining.Results:Four SEBT directions improved and faster scores for FSST and TUG tests for the standard-cycle group were found, whereas the strength-cycle group only improved their TUG scores. No changes posttraining for the control group.Conclusions:Stationary cycle training should be included in the dynamic balance-rehabilitation protocol for middle-aged women.


Sign in / Sign up

Export Citation Format

Share Document