scholarly journals Balance Performance Is Task Specific in Older Adults

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ayelet Dunsky ◽  
Aviva Zeev ◽  
Yael Netz

Balance ability among the elderly is a key component in the activities of daily living and is divided into two types: static and dynamic. For clinicians who wish to assess the risk of falling among their elderly patients, it is unclear if more than one type of balance test can be used to measure their balance impairment. In this study, we examined the association between static balance measures and two dynamic balance field tests. One hundred and twelve community-dwelling older adults (mean age 74.6) participated in the study. They underwent the Tetrax static postural assessment and then performed the Timed Up and Go (TUG) and the Functional Reach (FR) Test as dynamic balance tests. In general, low-moderate correlations were found between the two types of balance tests. For women, age and static balance parameters explained 28.1–40.4% of the variance of TUG scores and 14.6–24% of the variance of FR scores. For men, age and static balance parameters explained 9.5–31.2% of the variance of TUG scores and 23.9–41.7% of the variance of FR scores. Based on our findings, it is suggested that a combination of both static and dynamic tests be used for assessing postural balance ability.

Author(s):  
Hamid Allahverdipour ◽  
Iman Dianat ◽  
Galavizh Mameh ◽  
Mohammad Asghari Jafarabadi

Objective The aim of this study is to examine the effects of cognitive and physical loads on dynamic and static balance performance of healthy older adults under single-, dual-, and multi-task conditions. Background Previous studies on postural control in older adults have generally used dual-task methodology, whereas less attention has been paid to multi-task performance, despite its importance in many daily and occupational activities. Method The effects of single versus combined (dual-task and multi-task) cognitive (to speak out the name of the weekdays in a reverse order) and physical (with three levels including handling weights of 1, 2, and 3 kg in each hand) loads on dynamic and static balance performance of 42 older adults (21 males and 21 females) aged ≥60 years were examined. Dynamic and static balance measures were evaluated using the Timed Up and Go (TUG) and stabilometer (sway index) tests, respectively. Results The TUG speed of female participants was generally slower than that of male participants. Age had no effect on balance performance measures. Under dual-task conditions, cognitive load decreased the dynamic balance performance, while the physical task levels had no effect. The dual-task conditions had no impact on the static balance performance. The effects of cognitive and physical loads on dynamic balance performance varied under dual- and multi-task conditions. Conclusion The findings highlight differences between dual- and multi-task protocols and add to the understanding of balance performance in older adults under cognitive and physical loads. Application The present study highlights differences between dual- and multi-task methodologies that need to be considered in future studies of balance and control in older adults.


2019 ◽  
Author(s):  
Hamid Allahverdipour ◽  
Iman Dianat ◽  
Galavizh Mameh ◽  
mohammad Asghari Jafarabadi

Abstract Background: The aim of this study was to evaluate the effects of cognitive and physical loads on dynamic and static balance of older adults under single, dual and multi-task conditions. Methods: The effects of single versus combined (dual-task and multi-task) cognitive (to speak out the name of the weekdays in a reverse order) and physical (with three levels including handling weights of 1kg, 2kg and 3kg in each hand) loads on dynamic and static balance of 42 older adults (21 males and 21 females), aged ≥ 60 years were studied. Dynamic and static balance measures were evaluated using the Timed Up and Go (TUG) and stabilometer (sway index) tests, respectively. Results: The TUG speed of female participants was generally slower than that of male participants. Cognitive task influenced the participants’ dynamic balance during the dual-task conditions, while the static balance was not affected in this phase. The dynamic and static balance measures were more influenced when performing the multi-tasks than when doing the dual-tasks. The effects of various levels of physical demand on the dynamic balance varied greatly under dual- and multi-task conditions. Conclusions: The findings add to the understanding of the factors influencing the elderly balance and control under cognitive and physical functioning.


2020 ◽  
Vol 5 (4) ◽  
pp. 216-227
Author(s):  
Mahboobeh Dehnavi ◽  
◽  
Heidar Sadeghi ◽  
Mehdi Taghva ◽  
◽  
...  

Objective: The present study aimed to evaluate the reliability of functional balance tests and their correlation with selected anthropometric parameters in children aged 7-10 years. Methods: Participants were 80 students aged 7-10 (40 female and 40 male). Romberg Test and Sharpened Romberg Test were used for assessing static balance, while timed up and go test, tandem walk test, and Y-balance test were used for measuring dynamic balance. Selected anthropometric factors were body height, upper body length, lower body length, Foot length and body mass. Reliability was determined using intra-class correlation coefficient (ICC), and Pearson correlation was used for examining the relationship between balance tests and selected anthropometric parameters at a significance level of P≥0.05. Results: Static balance tests were not reliable, but dynamic tests were reliable. No significant correlation was found between anthropometric parameters and static and dynamic tests (P>0.05); except between lower body length and Y-balance test (r=0.53, P=0.01). Conclusion: It seems that at the age of 7-10 years, static balance tests are affected because the sensory systems related to balance are developing. Therefore, static balance tests, which require weighting of each of these systems with eyes closed and open, are not good criteria for examining the balance of this age group. Hence, it is better to use dynamic balance tests, especially the Y-balance test.


2019 ◽  
Vol 9 (5) ◽  
pp. 102 ◽  
Author(s):  
Liye Zou ◽  
Paul D. Loprinzi ◽  
Jane Jie Yu ◽  
Lin Yang ◽  
Chunxiao Li ◽  
...  

Background: Cognitive decline and balance impairment are prevalent in the aging population. Previous studies investigated the beneficial effects of 24-style Tai Chi (TC-24) on either cognitive function or balance performance of older adults. It still remains largely unknown whether modified Chen-style TC (MTC) that includes 18 complex movements is more beneficial for these age-related health outcomes, as compared to TC-24. Objective: We investigated if MTC would show greater effects than TC-24 on global cognitive function and balance-related outcomes among older adults. Methods: We conducted a randomized trial where 80 eligible adults aged over 55 were allocated into two different styles of Tai Chi (TC) arms (sixty-minute session × three times per week, 12 weeks). Outcome assessments were performed at three time periods (baseline, Week 6, and Week 12) and included the Chinese Version of the Montreal Cognitive Assessment (MoCA) for overall cognitive function, One-leg Standing Test (LST) for static balance, Timed Up and Go Test (TUGT) for dynamic balance, chair Stand Test (CST) for leg power, and the six-meter Walk Test (6MWT) for aerobic exercise capacity. Results: Compared to TC-24 arm, MTC arm demonstrated significantly greater improvements in MoCA, LST, TUGT, CST, and 6MWT (all p < 0.05). Conclusions: Both forms of TC were effective in enhancing global cognitive function, balance, and fitness. Furthermore, MTC was more effective than TC-24 in enhancing these health-related parameters in an aging population.


Author(s):  
Felicity Langley ◽  
Shylie Mackintosh

Background: For allied health professionals wishing to assess the functional balance of older adults living in the community, the vast number of functional balance tests available makes it difficult to decide which assessment is most appropriate. Objective: To identify the reliability, concurrent validity and clinical practicality of functional balance tests with community dwelling older adults. Methods: A systematic review of published literature relevant to 17 functional balance tests was undertaken. The 17 functional balance tests were identified by a preliminary literature search and through consultation with an expert in the field of functional balance assessment. Studies published in English before January 2007, assessing the use of these functional balance tests with community dwelling adults aged 65 years or above were included. The CINAHL, MEDLINE, Ageline, Amed, PubMed, Cochrane library, PEDro and Joanna Briggs Institute databases were searched. The methodological quality of studies was assessed using a checklist criteria adapted from the Cochrane Working Group for Screening and Diagnostic Tests. Results: Eight databases were searched and 21 studies were included. The majority of studies demonstrated low to moderate methodological quality scores. Despite limitations reported for clinical application with community dwelling older adults, the Berg Balance Scale and the Timed Up and Go Test have been most rigorously tested. Reliability and concurrent validity of the Balance Screening Tool and the Fullerton Advanced Balance Scale had also been established in this population, however only one study was retrieved for each. Conclusion: The Berg Balance Scale and Timed Up and Go Test have published reliability, validity with community dwelling older adults. Further testing of other functional balance tests is required to establish their reliability and validity in this target population.


2014 ◽  
Vol 22 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Nicole Kahle ◽  
Michael A. Tevald

To determine the effect of core muscle strengthening on balance in community-dwelling older adults, 24 healthy men and women between 65 and 85 years old were randomized to either exercise (EX;n= 12) or control (CON;n= 12) groups. The exercise group performed a core strengthening home exercise program thrice weekly for 6 wk. Core muscle (curl-up test), functional reach (FR) and Star Excursion Balance Test (SEBT) were assessed at baseline and follow-up. There were no group differences at baseline. At follow-up, EX exhibited significantly greater improvements in curl-up (Cohen’sd= 4.4), FR (1.3), and SEBT (>1.9 for all directions) than CON. The change in curl-up was significantly correlated with the change in FR (r= .44,p= .03) and SEBT (r> .61,p≤ .002). These results suggest that core strengthening should be part of a comprehensive balance-training program for older adults.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3653
Author(s):  
Jason Tallis ◽  
Chelsea Bradford ◽  
Michael J. Duncan ◽  
Sheila Leddington-Wright ◽  
Matthew F. Higgins ◽  
...  

The present work aimed to evaluate the effect of 3 mg·kg−1 caffeine consumption on the standing and dynamic balance performance of older adults and sought to establish if caffeine ingestion can modulate the influence of a cognitive dual task on balance performance. Twelve apparently healthy participants (8 females) aged >65 years (72 ± 3.7 years) completed the study. Bipedal postural sway, four square step test, timed up and go, Y-balance (anterior reach only) and force-time characteristics of sit-to-stand performance were used to assess standing and dynamic balance. Attention and working memory were assessed using a serial 3s and 7s subtraction task during seated rest and completion of the bipedal standing assessment and Y-balance test. This battery of assessments was completed on two separate occasions, once following the consumption of a non-ergogenic placebo and again following the consumption of 3 mg·kg−1 caffeine. The administration of treatments was randomised, counterbalanced and double-blind. Caffeine reduced performance in the bipedal standing balance assessments, evidenced by an increase in COPML, COPPath, COPVelocity. Performance during the dynamic balance tests was unaffected, other than rate of force development during the sit-to-stand, which was improved following caffeine ingestion. The introduction of a cognitive dual task had either limited effects, or improved facets of bipedal standing balance, whilst performance during the dynamic balance task was significantly reduced. In both balance assessments, there was evidence for a reduction in the performance of the cognitive task when both the balance and cognitive tests were performed simultaneously, with this effect not modulated by caffeine consumption. These findings refute the idea that caffeine ingestion may have positive effects on balance performance. However, despite a caffeine-induced reduction in bipedal standing balance, it is unlikely that caffeine ingestion would exacerbate fall risk given the limited effects in the dynamic balance tests. Future work should establish if these effects are generalisable to older frail participants and if caffeine can modulate the detrimental effects of an acute exercise bout on balance performance.


2020 ◽  
Vol 75 (1) ◽  
pp. 139-148
Author(s):  
Qingshan Zhang ◽  
Robin Trama ◽  
Alexandre Fouré ◽  
Christophe A Hautier

Abstract Self-myofascial release (SMR) is a popular method to potentially increase the compliance and extensibility of the fascia and reduce muscle stiffness. The purpose of this study was to examine the acute effects of posterior muscle chain SMR on flexibility, vertical jump performance and balance ability. Eighteen young participants volunteered to take part in this crossover design study. They performed two self-massage sessions in randomized order separated by at least one week. One session consisted of posterior muscle chain SMR whereas the other one was performed on the upper limbs as a control intervention (CON). Flexibility was measured with the Toe Touch Test (TTT), Weight-Bearing Lunge Test (WBLT), and Straight Leg Raise Test (SLR). Jump performance was evaluated during a squat jump, a counter movement jump and a stiffness jump. Dynamic balance ability was assessed through the Star Excursion Balance Test. All these variables were measured before and after each intervention. A significant increase in flexibility (+3.5 ± 1.8 cm, +1.6 ± 1.0°, and +7.7 ± 4.0° for the TTT, WLBT, and SLR, respectively, p < 0.003) and balance performance (4.8 ± 3.9 cm, p < 0.003) was observed following SMR intervention compared to CON. Conversely, jumping performance was unchanged in both groups. SMR improves joint flexibility and dynamic balance ability.


Author(s):  
Mark W Rogers ◽  
Robert A Creath ◽  
Vicki Gray ◽  
Janice Abarro ◽  
Sandy McCombe Waller ◽  
...  

Abstract Background This factorial, assessor-blinded, randomized, and controlled study compared the effects of perturbation-induced step training (lateral waist-pulls), hip muscle strengthening, and their combination, on balance performance, muscle strength, and prospective falls among older adults. Methods Community-dwelling older adults were randomized to 4 training groups. Induced step training (IST, n = 25) involved 43 progressive perturbations. Hip abduction strengthening (HST, n = 25) utilized progressive resistance exercises. Combined training (CMB, n = 25) included IST and HST, and the control performed seated flexibility/relaxation exercises (SFR, n = 27). The training involved 36 sessions for a period of 12 weeks. The primary outcomes were the number of recovery steps and first step length, and maximum hip abduction torque. Fall frequency during 12 months after training was determined. Results Overall, the number of recovery steps was reduced by 31% and depended upon the first step type. IST and CMB increased the rate of more stable single lateral steps pre- and post-training than HST and SFR who used more multiple crossover and sequential steps. The improved rate of lateral steps for CMB exceeded the control (CMB/SFR rate ratio 2.68). First step length was unchanged, and HST alone increased hip torque by 25%. Relative to SFR, the fall rate ratios (falls/person/year) [95% confidence interval] were CMB 0.26 [0.07–0.90], IST 0.44 [0.18–1.08], and HST 0.30 (0.10–0.91). Conclusions Balance performance through stepping was best improved by combining perturbation and strength training and not strengthening alone. The interventions reduced future falls by 56%–74% over the control. Lateral balance perturbation training may enhance traditional programs for fall prevention.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 407
Author(s):  
Laetitia Lengelé ◽  
Olivier Bruyère ◽  
Charlotte Beaudart ◽  
Jean-Yves Reginster ◽  
Médéa Locquet

This study aimed to assess the impact of malnutrition on the 5-year evolution of physical performance, muscle mass and muscle strength in participants from the SarcoPhAge cohort, consisting of community-dwelling older adults. The malnutrition status was assessed at baseline (T0) according to the “Global Leadership Initiatives on Malnutrition” (GLIM) criteria, and the muscle parameters were evaluated both at T0 and after five years of follow-up (T5). Lean mass, muscle strength and physical performance were assessed using dual X-ray absorptiometry, handgrip dynamometry, the short physical performance battery test and the timed up and go test, respectively. Differences in muscle outcomes according to nutritional status were tested using Student’s t-test. The association between malnutrition and the relative 5-year change in the muscle parameters was tested using multiple linear regressions adjusted for several covariates. A total of 411 participants (mean age of 72.3 ± 6.1 years, 56% women) were included. Of them, 96 individuals (23%) were diagnosed with malnutrition at baseline. Their muscle parameters were significantly lower than those of the well-nourished patients both at baseline and after five years of follow-up (all p-values < 0.05), except for muscle strength in women at T5, which was not significantly lower in the presence of malnutrition. However, the 5-year changes in muscle parameters of malnourished individuals were not significantly different than those of well-nourished individuals (all p-values > 0.05).


Sign in / Sign up

Export Citation Format

Share Document