scholarly journals Pork Liver Pâté Enriched with Persimmon Coproducts: Effect of In Vitro Gastrointestinal Digestion on Its Fatty Acid and Polyphenol Profile Stability

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1332
Author(s):  
Raquel Lucas-González ◽  
José Ángel Pérez-Álvarez ◽  
Manuel Viuda-Martos ◽  
Juana Fernández-López

Agrofood coproducts are used to enrich meat products to reduce harmful compounds and contribute to fiber and polyphenol enrichment. Pork liver pâtés with added persimmon coproducts (3 and 6%; PR-3 and PR-6, respectively) were developed. Therefore, the aim was to study the effect of their in vitro gastrointestinal digestion on: the free and bound polyphenol profile (HPLC) and their colon-available index; the lipid oxidation (TBARs); and the stability of the fatty acid profile (GC). Furthermore, the effect of lipolysis was investigated using two pancreatins with different lipase activity. Forty-two polyphenols were detected in persimmon flour, which were revealed as a good source of bound polyphenols in pâtés, especially gallic acid (164.3 µg/g d.w. in PR-3 and 631.8 µg/g d.w. in PR-6). After gastrointestinal digestion, the colon-available index in enriched pâté ranged from 88.73 to 195.78%. The different lipase activity in the intestinal phase caused significant differences in bound polyphenols’ stability, contributing to increased lipid oxidation. The fatty acids profile in pâté samples was stable, and surprisingly their PUFA content was raised. In conclusion, rich fatty foods, such as pâté, are excellent vehicles to preserve bound polyphenols, which can reach the colon intact and be metabolized by the intestinal microbiome.

2018 ◽  
Vol 55 (4) ◽  
pp. 1518-1524 ◽  
Author(s):  
Ana Carolina Pelaes Vital ◽  
Camila Croge ◽  
Denise Felix da Silva ◽  
Priscila Jorge Araújo ◽  
Mariane Z. Gallina ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 72
Author(s):  
Raquel Lucas-González ◽  
José Ángel Pérez-Álvarez ◽  
Manuel Viuda-Martos ◽  
Juana Fernández-López

Co-products from the agro-food industry can be used as novel and natural ingredients in the reformulation of traditional foods to reduce the use of synthetic additives or improve their final quality. The aim of this study was to enrich pork liver pâté with persimmon flour co-products at two concentrations (3% and 6%) and to compare their total cholesterol (high-performance liquid chromatography (HPLC)), fatty acid (Gas Chromatography (GC)) phenolic compound (HPLC) profiles, and lipid oxidation (thiobarbituric acid-reactive substance (TBARS) assay) after in vitro digestion (INFOGEST consensus method) with the control pâté. The cholesterol content in pâté samples was significantly reduced in a dose-dependent way (control > pâté 3% > pâté 6%; 98 ± 8; 89 ± 3; 68 ± 11 mg/100 g pâté, respectively), probably due to the fiber and cholesterol interactions. Gallic, caffeic acids, glycosylated gallic acid, glycosylated coumaric acid, and glycosylated quercetin were detected in the enriched pâtés. The sum of all these compounds was 74 and 239 µg/g pâté in the pâtés with 3% and 6% of persimmon flour, respectively. Oleic, palmitic, and linoleic acids were the majority of fatty acids found in all pâtés. The increase of lipid oxidation after in vitro digestion was higher in the control pâté than in the enriched pâtés. In conclusion, the enrichment of pâté with persimmon flours caused a reduction in their total cholesterol content and lipid oxidation after in vitro digestion, without modifications in their fatty acid profile to what the phenolic compounds could be contributing.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Bárbara Nieva-Echevarría ◽  
Encarnación Goicoechea ◽  
Patricia Sopelana ◽  
María D. Guillén

Although widely consumed, dietary supplements based on Vitamin C contain high doses of this compound, whose impact on lipid oxidation during digestion needs to be addressed. Therefore, the effect of seven commercial supplements and of pure l-ascorbic acid and ascorbyl palmitate on linseed oil during in vitro gastrointestinal digestion was tackled. The advance of lipid oxidation was studied through the generation of oxidation compounds, the degradation of polyunsaturated fatty acyl chains and of gamma-tocopherol, by employing Proton Nuclear Magnetic Resonance. Supplements containing exclusively l-ascorbic acid enhanced the advance of linseed oil oxidation during digestion. This was evidenced by increased formation of linolenic-derived conjugated hydroxy-dienes and alkanals and by the generation of conjugated keto-dienes and reactive alpha,beta-unsaturated aldehydes, such as 4,5-epoxy-2-alkenals; moreover, gamma-tocopherol was completely degraded. Conversely, supplements composed of mixtures of ascorbic acid/salt with citric acid and carotenes, and of ascorbyl palmitate, protected linseed oil against oxidation and reduced gamma-tocopherol degradation. The study through Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry of the volatile compounds of the digests corroborated these findings. Furthermore, a decreased lipid bioaccessibility was noticed in the presence of the highest dose of l-ascorbic acid. Both the chemical form of Vitamin C and the presence of other ingredients in dietary supplements have shown to be of great relevance regarding oxidation and hydrolysis reactions occurring during lipid digestion.


2021 ◽  
Author(s):  
Yuanyuan Hu ◽  
Guanhua Zhao ◽  
Jialiang Wang ◽  
Zhongyuan Liu ◽  
fawen Yin ◽  
...  

This study investigated lipid oxidation and aldehyde formation in roasted scallop during in vitro gastrointestinal digestion, and the effects of co-digestion of antioxidant of bamboo leaves (AOB) on this process....


Sign in / Sign up

Export Citation Format

Share Document