scholarly journals The Effect of Isolated and Combined Application of Menthol and Carbohydrate Mouth Rinses on 40 km Time Trial Performance, Physiological and Perceptual Measures in the Heat

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4309
Author(s):  
Russ Best ◽  
Seana Crosby ◽  
Nicolas Berger ◽  
Kerin McDonald

The current study compared mouth swills containing carbohydrate (CHO), menthol (MEN) or a combination (BOTH) on 40 km cycling time trial (TT) performance in the heat (32 °C, 40% humidity, 1000 W radiant load) and investigates associated physiological (rectal temperature (Trec), heart rate (HR)) and subjective measures (thermal comfort (TC), thermal sensation (TS), thirst, oral cooling (OC) and RPE (legs and lungs)). Eight recreationally trained male cyclists (32 ± 9 y; height: 180.9 ± 7.0 cm; weight: 76.3 ± 10.4 kg) completed familiarisation and three experimental trials, swilling either MEN, CHO or BOTH at 10 km intervals (5, 15, 25, 35 km). The 40 km TT performance did not differ significantly between conditions (F2,14 = 0.343; p = 0.715; η2 = 0.047), yet post-hoc testing indicated small differences between MEN and CHO (d = 0.225) and MEN and BOTH (d = 0.275). Subjective measures (TC, TS, RPE) were significantly affected by distance but showed no significant differences between solutions. Within-subject analysis found significant interactions between solution and location upon OC intensity (F28,196 = 2.577; p < 0.001; η2 = 0.269). While solutions containing MEN resulted in a greater sensation of OC, solutions containing CHO experienced small improvements in TT performance. Stimulation of central CHO pathways during self-paced cycling TT in the heat may be of more importance to performance than perceptual cooling interventions. However, no detrimental effects are seen when interventions are combined.

2010 ◽  
Vol 5 (2) ◽  
pp. 140-151 ◽  
Author(s):  
Mohammed Ihsan ◽  
Grant Landers ◽  
Matthew Brearley ◽  
Peter Peeling

Purpose:The effect of crushed ice ingestion as a precooling method on 40-km cycling time trial (CTT) performance was investigated.Methods:Seven trained male subjects underwent a familiarization trial and two experimental CTT which were preceded by 30 min of either crushed ice ingestion (ICE) or tap water (CON) consumption amounting to 6.8 g⋅kg-1 body mass. The CTT required athletes to complete 1200 kJ of work on a wind-braked cycle ergometer. During the CTT, gastrointestinal (Tgi) and skin (Tsk) temperatures, cycling time, power output, heart rate (HR), blood lactate (BLa), ratings of perceived exertion (RPE) and thermal sensation (RPTS) were measured at set intervals of work.Results:Precooling lowered the Tgi after ICE significantly more than CON (36.74 ± 0.67°C vs 37.27 ± 0.24°C, P < .05). This difference remained evident until 200 kJ of work was completed on the bike (37.43 ± 0.42°C vs 37.64 ± 0.21°C). No significant differences existed between conditions at any time point for Tsk, RPE or HR (P > .05). The CTT completion time was 6.5% faster in ICE when compared with CON (ICE: 5011 ± 810 s, CON: 5359 ± 820 s, P < .05).Conclusions:Crushed ice ingestion was effective in lowering Tgi and improving subsequent 40-km cycling time trial performance. The mechanisms for this enhanced exercise performance remain to be clarified.


2013 ◽  
Vol 8 (3) ◽  
pp. 307-311 ◽  
Author(s):  
Koen Levels ◽  
Lennart P.J. Teunissen ◽  
Arnold de Haan ◽  
Jos J. de Koning ◽  
Bernadet van Os ◽  
...  

Purpose:The best way to apply precooling for endurance exercise in the heat is still unclear. The authors analyzed the effect of different preparation regimens on pacing during a 15-km cycling time trial in the heat.Methods:Ten male subjects completed four 15-km time trials (30°C), preceded by different preparation regimes: 10 min cycling (WARM-UP), 30 min scalp cooling of which 10 min was cycling (SC+WARM-UP), ice-slurry ingestion (ICE), and ice slurry ingestion + 30 min scalp cooling (SC+ICE).Results:No differences were observed in finish time and mean power output, although power output was lower for WARM-UP than for SC+ICE during km 13–14 (17 ± 16 and 19 ± 14 W, respectively) and for ICE during km 13 (16 ± 16 W). Rectal temperature at the start of the time trial was lower for both ICE conditions (~36.7°C) than both WARMUP conditions (~37.1°C) and remained lower during the first part of the trial. Skin temperature and thermal sensation were lower at the start for SC+ICE.Conclusions:The preparation regimen providing the lowest body-heat content and sensation of coolness at the start (SC+ICE) was most beneficial for pacing during the latter stages of the time trial, although overall performance did not differ.


2013 ◽  
Vol 23 (5) ◽  
pp. 507-512 ◽  
Author(s):  
Angela L. Spence ◽  
Marc Sim ◽  
Grant Landers ◽  
Peter Peeling

Both caffeine (CAF) and pseudoephedrine (PSE) are proposed to be central nervous system stimulants. However, during competition, CAF is a permitted substance, whereas PSE is a banned substance at urinary levels >150 μg·ml−1. As a result, this study aimed to compare the effect of CAF versus PSE use on cycling time trial (TT) performance to explore whether the legal stimulant was any less ergogenic than the banned substance. Here, 10 well-trained male cyclists or triathletes were recruited for participation. All athletes were required to attend the laboratory on four separate occasions—including a familiarization trial and three experimental trials, which required participants to complete a simulated 40 km (1,200 kJ) cycling TT after the ingestion of either 200 mg CAF, 180 mg PSE or a nonnutritive placebo (PLA). The results showed that the total time taken and the mean power produced during each TT was not significantly different (p > .05) between trials, despite a 1.3% faster overall time (~57 s) after CAF consumption. Interestingly, the time taken to complete the second half of the TT was significantly faster (p < .05) in CAF as compared with PSE (by 99 s), with magnitude based inferences suggesting a 91% beneficial effect of CAF during the second half of the TT. This investigation further confirms the ergogenic benefits of CAF use during TT performances and further suggests this legal CNS stimulant has a better influence than a supra-therapeutic dose of PSE.


Author(s):  
Matthew Zimmermann ◽  
Grant Justin Landers ◽  
Karen Elizabeth Wallman

This study examined the effects of precooling via ice ingestion on female cycling performance in hot, humid conditions. Ten female endurance athletes, mean age (28 ± 6 y), height (167.6 ± 6.5 cm) and body-mass (68.0 ± 11.5 kg) participated in the study. Participants completed an 800 kJ cycle time-trial in hot, humid conditions (34.9 ± 0.3 °C, 49.8 ± 3.5% RH). This was preceded by the consumption of 7 g∙kg-1 of crushed ice (ICE) or water (CON). There was no difference in performance time (CON 3851 ± 449 s; ICE 3767 ± 465 s), oxygen consumption (CON 41.6 ± 7.0 ml∙kg∙min-1; ICE 42.4 ± 6.0 ml∙kg∙min-1) or respiratory exchange ratio (CON 0.88 ± 0.05; ICE 0.90 ± 0.06) between conditions (p > .05, d < 0.5). Core and skin temperature following the precooling period were lower in ICE (Tc 36.4 ± 0.4 °C; Tsk 31.6 ± 1.2 °C) compared with CON (Tc 37.1 ± 0.4 °C; Tsk 32.4 ± 0.7 °C) and remained lower until the 100 kJ mark of the cycle time-trial (p < .05, d > 1.0). Sweat onset occurred earlier in CON (228 ± 113 s) compared with ICE (411 ± 156 s) (p < .05, d = 1.63). Mean thermal sensation (CON 1.8 ± 2.0; ICE 1.2 ± 2.5, p < .05, d = 2.51), perceived exertion (CON 15.3 ± 2.9; ICE 14.9 ± 3.0, p < .05, d = 0.38) and perceived thirst (CON 5.6 ± 2.2; ICE 4.6 ± 2.4, p < .05, d = 0.98) were lower in ICE compared with CON. Crushed ice ingestion did not improve cycling performance in females, although perceptual responses were reduced.


2015 ◽  
Vol 10 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Dionne A. Noordhof ◽  
Roy C.M. Mulder ◽  
Katherine R. Malterer ◽  
Carl Foster ◽  
Jos J. de Koning

Purpose:To evaluate whether gross efficiency (GE), determined during submaximal cycling, is lower after time trials and if the magnitude of the decrease differs in relation to race distance. Secondary purposes were to study the rate of the decline in GE and whether changes in muscle-fiber recruitment could explain the decline.Methods:Cyclists completed 9 GE tests consisting of submaximal exercise performed before and after time trials of different length (500 m, 1000 m, 2000 m, 4000 m, 15,000 m, and 40,000 m). In addition, subjects performed time trials as if they were a 1000-m, 4000-m, or 40,000-m time trial during which they were stopped at 50% of the final time of the preceding “full” time trial. Power output, gas exchange, and EMG were measured continuously throughout the GE tests.Results:A significant interaction effect between distance and time was found for GE (P = .001). GE was significantly lower immediately after the time trials than before (P < .05), and the decline in GE differed between distances (P < .001). GE seemed to decline linearly during the relatively short trials, while it declined more hyperbolically during the 40,000-m. A significant effect of time (P = .04) on mean EMG amplitude was found. However, post hoc comparisons showed no significant differences in mean EMG amplitude between the different time points (before and after the time trials).Conclusion:GE decreases during time-trial exercise. Unfortunately, the cause of the decrease remains uncertain. Future modeling studies should consider using a declining instead of a constant GE. In sport situations, the declining GE has to be taken into account when selecting a pacing strategy.


2018 ◽  
Author(s):  
Oliver Gibson ◽  
James Graeme Wrightson ◽  
Mark Hayes

Purpose. Cooling sensations elicited by mouth rinsing with L-Menthol have been reported as ergogenic. Presently, responses to L-Menthol mouth rinsing during intermittent sprint performance (ISP) in the heat are unknown and the impact of increased thermal perception on ISP via Capsaicin has also not been quantified. This experiment aimed to identify whether eliciting cooling/warming sensations via L-Menthol/Capsaicin would alter ISP in the heat.Method. Fourteen participants [mass=72±9 kg, V̇O2peak=3.30±0.90 L.min-1], undertook four experimental trials, involving 40 min of ISP in hot conditions (40.2±0.6°C, 42±2%R.H.) with mouth rinsing (25 mL, 6 sec) at the protocol onset, and every 10 min thereafter. Cooling (0.01%L-Menthol; MEN), warming (0.2%Capsaicin; CAP), placebo (0.3 sham-CHO; PLA) and control (water; CON) mouth rinses were utilised. Performance was quantified via power (PP) and work done (WD) during sprints. Heart rate (HR), core (Trec) and skin (Tskin) temperature, perceived exertion (RPE), thermal sensation (Tsens) and comfort (Tcom) were measured at 10 min intervals. Sweat rate (WBSR) was calculated from ∆mass. Result. PP reduced over time (P&lt;0.05), however no change was observed between trials for PP or WD (P&gt;0.05). Tcom increased over time and was lower in MEN (2.7±1.1; P&lt;0.05) with no difference between CAP (3.1±1.2), PLA (3.2±1.3) and CON (3.1±1.3). RPE, Tsens HR, Trec, Tskin increased over time (P&lt;0.05) with no between trial differences (P&gt;0.05). Conclusion. Despite improved thermal comfort via L-Menthol, ISP did not improve. Capsaicin did not alter thermal perception or ISP. The reduction in ISP over time in hot conditions is not influenced by thermal perception.


2022 ◽  
Vol 3 ◽  
Author(s):  
Jared Ferguson ◽  
Amir Hadid ◽  
Yoram Epstein ◽  
Dennis Jensen

Purpose: Examine the effect of synthetic fabrics (SYN, 60% polyester: 40% nylon) vs. 100% cotton fabric (CTN) on the 20-km cycling time trial (20 kmCTT) performance of competitive cyclists and triathletes.Methods: In this randomized controlled crossover study, 15 adults (5 women) aged 29.6 ± 2.7 years (mean ± SE) with a peak rate of O2 consumption of 60.0 ± 2.0 ml/kg/min completed a 20 kmCTT under ambient laboratory conditions (24.3 ± 0.7°C and 17 ± 7% relative humidity) with a simulated wind of ~3 m/s while wearing SYN or CTN clothing ensembles. Both ensembles were of snowflake mesh bi-layer construction and consisted of a loose-fitting long-sleeved shirt with full-length trousers.Results: Participants maintained a significantly (p &lt; 0.05) higher cycling speed and power output over the last 6-km of the 20 kmCTT while wearing the SYN vs. CTN ensemble (e.g., by 0.98 km/h and 18.4 watts at the 20-km mark). Consequently, 20 kmCTT duration was significantly reduced by 15.7 ± 6.8 sec or 0.8 ± 0.3% during SYN vs. CTN trials (p &lt; 0.05). Improved 20 kmCTT performance with SYN vs. CTN clothing could not be explained by concurrent differences in esophageal temperature, sweat rate, ratings of perceived exertion and/or cardiometabolic responses to exercise. However, it was accompanied by significantly lower mean skin temperatures (~1°C) and more favorable ratings of perceived clothing comfort and thermal sensation during exercise.Conclusion: Under the experimental conditions of the current study, athletic clothing made of synthetic fabrics significantly improved the 20 kmCTT performance of endurance-trained athletes by optimizing selected thermoregulatory and perceptual responses to exercise.


2014 ◽  
Vol 28 (9) ◽  
pp. 2513-2520 ◽  
Author(s):  
Renato A.S. Silva ◽  
Fernando L. Silva-Júnior ◽  
Fabiano A. Pinheiro ◽  
Patrícia F.M. Souza ◽  
Daniel A. Boullosa ◽  
...  

2012 ◽  
Vol 15 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Mark G.L. Sayers ◽  
Amanda L. Tweddle ◽  
Joshua Every ◽  
Aaron Wiegand

Sign in / Sign up

Export Citation Format

Share Document