scholarly journals Quarkonia Formation in a Holographic Gravity–Dilaton Background Describing QCD Thermodynamics

Particles ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 159-177
Author(s):  
Rico Zöllner ◽  
Burkhard Kämpfer

A holographic model of probe quarkonia is presented, where the dynamical gravity–dilaton background was adjusted to the thermodynamics of 2 + 1 flavor QCD with physical quark masses. The quarkonia action was modified to account for the systematic study of the heavy-quark mass dependence. We focused on the J/ψ and Υ spectral functions and related our model to heavy quarkonia formation as a special aspect of hadron phenomenology in heavy-ion collisions at LHC.

2016 ◽  
Vol 2016 (12) ◽  
Author(s):  
Roberto Bonciani ◽  
Vittorio Del Duca ◽  
Hjalte Frellesvig ◽  
Johannes M. Henn ◽  
Francesco Moriello ◽  
...  

1998 ◽  
Vol 63 (1-3) ◽  
pp. 380-382 ◽  
Author(s):  
S. Aoki ◽  
M. Fukugita ◽  
S. Hashimoto ◽  
K.-I. Ishikawa ◽  
N. Ishizuka ◽  
...  

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
R. Molina ◽  
J. Ruiz de Elvira

Abstract Recent lattice data on ππ-scattering phase shifts in the vector-isovector channel, pseudoscalar meson masses and decay constants for strange-quark masses smaller or equal to the physical value allow us to study the strangeness dependence of these observables for the first time. We perform a global analysis on two kind of lattice trajectories depending on whether the sum of quark masses or the strange-quark mass is kept fixed to the physical point. The quark mass dependence of these observables is extracted from unitarized coupled-channel one-loop Chiral Perturbation Theory. This analysis guides new predictions on the ρ(770) meson properties over trajectories where the strange-quark mass is lighter than the physical mass, as well as on the SU(3) symmetric line. As a result, the light- and strange-quark mass dependence of the ρ(770) meson parameters are discussed and precise values of the Low Energy Constants present in unitarized one-loop Chiral Perturbation Theory are given. Finally, the current discrepancy between two- and three-flavor lattice results for the ρ(770) meson is studied.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Long Chen ◽  
Gudrun Heinrich ◽  
Stephen P. Jones ◽  
Matthias Kerner ◽  
Jonas Klappert ◽  
...  

Abstract We present results for the two-loop helicity amplitudes entering the NLO QCD corrections to the production of a Higgs boson in association with a Z -boson in gluon fusion. The two-loop integrals, involving massive top quarks, are calculated numerically. Results for the interference of the finite part of the two-loop amplitudes with the Born amplitude are shown as a function of the two kinematic invariants on which the amplitudes depend.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Marco Niggetiedt

Abstract We follow up on our discussion of the exact quark-mass dependence of the Higgs-gluon form factor at three loops in QCD [1] and turn our attention to the closely related Higgs-photon form factor. Similarly to our previous work, we intend to examine the form factor for the decay of a Higgs-boson with variable mass into two photons at the three-loop level in QCD. The set of master integrals is known numerically due to prior work on the Higgs-gluon form factor and is exploited to obtain expansions around the threshold as well as in the high-energy limit. Our results may be utilised to derive the photonic decay rate of the Higgs-boson through next-to-next-to-leading order.


2016 ◽  
Vol 2016 (10) ◽  
Author(s):  
S. Borowka ◽  
N. Greiner ◽  
G. Heinrich ◽  
S.P. Jones ◽  
M. Kerner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document