scholarly journals Role of Chronic Lymphocytic Leukemia (CLL)-Derived Exosomes in Tumor Progression and Survival

2020 ◽  
Vol 13 (9) ◽  
pp. 244
Author(s):  
Nancy Nisticò ◽  
Domenico Maisano ◽  
Enrico Iaccino ◽  
Eleonora Vecchio ◽  
Giuseppe Fiume ◽  
...  

Chronic lymphocytic leukemia (CLL) is a B-lymphoproliferative disease, which consists of the abnormal proliferation of CD19/CD5/CD20/CD23 positive lymphocytes in blood and lymphoid organs, such as bone marrow, lymph nodes and spleen. The neoplastic transformation and expansion of tumor B cells are commonly recognized as antigen-driven processes, mediated by the interaction of antigens with the B cell receptor (BCR) expressed on the surface of B-lymphocytes. The survival and progression of CLL cells largely depend on the direct interaction of CLL cells with receptors of accessory cells of tumor microenvironment. Recently, much interest has been focused on the role of tumor release of small extracellular vesicles (EVs), named exosomes, which incorporate a wide range of biologically active molecules, particularly microRNAs and proteins, which sustain the tumor growth. Here, we will review the role of CLL-derived exosomes as diagnostic and prognostic biomarkers of the disease.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1187-1187
Author(s):  
Jan A. Burger ◽  
Myriam Krome ◽  
Andrea Bürkle ◽  
Tanja N. Hartmann

Abstract There is growing evidence that the microenvironment confers survival signals to Chronic Lymphocytic Leukemia (CLL) B-cells that may result in disease progression and resistance to therapy. In the marrow or secondary lymphoid tissues, CLL cells are in close contact with non-tumoral accessory cells, such as mesenchymal stromal cells or nurselike cells. We previously characterized SDF-1 (CXCL12) as a central mediator for CLL cell migration and interaction with the protective microenvironment. Constitutive secretion of CXCL12 attracts CLL cells to stroma or NLC through its cognate receptor, CXCR4. These accessory cells protect CLL cells from spontaneous or drug-induced apoptosis, which is contact-dependent and partially mediated by CXCL12. B-cell receptor (BCR) signaling has been considered another important regulator of CLL cell survival. Typically, CLL cell that lack somatic mutations in the immunoglobulin (Ig) variable region (V) genes and display high levels of the tyrosine kinase ZAP-70 strongly responds to anti-IgM stimulation. Because both, CXCL12 stimulation and BCR signaling may represent important mechanism for maintenance of CLL cell within the microenvironment, we examined whether anti-IgM stimulation affects CXCL12 responses in correlation with the ZAP-70 status. BCR signaling was modulated either by crosslinking the BCR with IgM or by blocking the tyrosine kinase Syk. Effective BCR cross-linking with anti-IgM antibodies was demonstrated by phosphorylation of Syk and p44/42 MAP kinase. In ZAP-70 positive cells, BCR crosslinking resulted in a robust activation of Syk, p44/42 MAP kinases, and protein kinase B (Akt). ZAP-70 negative CLL cells displayed a weaker activation of p44/42 upon IgM crosslinking. Pretreatment of CLL cells with anti-IgM resulted in an enhanced calcium mobilization upon CXCL12 stimulation. This was not due to changes in surface expression of CXCR4. Accordingly, Syk inhibition by piceatannol resulted in a loss of calcium response upon CXCL12 stimulation. Furthermore, anti-IgM stimulation significantly increased CLL cell chemotaxis towards CXCL12 1.4 ± 1.2fold (n=9, p=0.027), and Syk inhibition by piceatannol decreased chemotaxis to 0.6 ± 0.2fold of controls (n=8). In these experiments, we could not detect differences between ZAP-70 positive or negative cells. However, there was a strong difference regarding the spontaneous, CXCL12-dependent migration of CLL cells beneath marrow stromal cells (pseudoemperipolesis). BCR crosslinking significantly increased pseudoemperipolesis of ZAP-70 expressing CLL cells 13.4 ± 21.0fold (n=7, p=0.043), whereas there was no significant increase in pseudoemperipolesis of ZAP-70 negative cells (1.4 ± 0.2fold increase, n=8). Syk inhibition by piceatannol significantly decreased the pseudoemperipolesis of ZAP-70 positive as well as ZAP-70 negative CLL cells to 0.4 ± 0.07 of controls (n=5, p=0.043). Interestingly, spontaneous migration of CLL cells beneath follicular dendritic cells (HK cells) was also significantly enhanced by anti-IgM stimulation, in particular in ZAP-70 positive cases. In summary, BCR signaling enhances calcium mobilization, CLL cell migration to CXCL12, and pseudoemperipolesis beneath marrow stroma or follicular dendritic cells. These data suggest that BCR stimulation co-operates with CXCL12 for localization and/or maintenance of CLL cells within distinct tissue microenvironments.


Hematology ◽  
2005 ◽  
Vol 2005 (1) ◽  
pp. 278-284 ◽  
Author(s):  
Guillaume Dighiero

Abstract Chronic lymphocytic leukemia (CLL) follows an extremely variable course with survival ranging from months to decades. Recently, there has been major progress in the identification of molecular and cellular markers that may predict the tendency for disease progression in CLL patients. In particular, the mutational profile of Ig genes and some cytogenetic abnormalities have been found to be important predictors of prognosis in CLL. However, this progress has raised new questions about the biology and prognosis of the disease, some of which are addressed here. Such questions include: 1) What is the role of the B-cell receptor (BCR) in CLL pathogenesis? 2) Is CLL one disease? 3) Is CLL an accumulative disease? 4) What is the normal counterpart of the CLL B lymphocyte? 5) Have the Rai and Binet staging systems become obsolete? 6) Which is the best surrogate for Ig mutational profiles?


2017 ◽  
Vol 6 (12) ◽  
pp. 2984-2997 ◽  
Author(s):  
Aleena A. Gladkikh ◽  
Daria M. Potashnikova ◽  
Victor Tatarskiy ◽  
Margarita Yastrebova ◽  
Alvina Khamidullina ◽  
...  

Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2090-2093 ◽  
Author(s):  
Dirk Kienle ◽  
Axel Benner ◽  
Alexander Kröber ◽  
Dirk Winkler ◽  
Daniel Mertens ◽  
...  

The mutation status and usage of specific VH genes such as V3-21 and V1-69 are potentially independent pathogenic and prognostic factors in chronic lymphocytic leukemia (CLL). To investigate the role of antigenic stimulation, we analyzed the expression of genes involved in B-cell receptor (BCR) signaling/activation, cell cycle, and apoptosis control in CLL using these specific VH genes compared to VH mutated (VH-MUT) and VH unmutated (VH-UM) CLL not using these VH genes. V3-21 cases showed characteristic expression differences compared to VH-MUT (up: ZAP70 [or ZAP-70]; down: CCND2, P27) and VH-UM (down: PI3K, CCND2, P27, CDK4, BAX) involving several BCR-related genes. Similarly, there was a marked difference between VH unmutated cases using the V1-69 gene and VH-UM (up: FOS; down: BLNK, SYK, CDK4, TP53). Therefore, usage of specific VH genes appears to have a strong influence on the gene expression pattern pointing to antigen recognition and ongoing BCR stimulation as a pathogenic factor in these CLL subgroups.


Author(s):  
Sarah Wilmore ◽  
Karly-Rai Rogers-Broadway ◽  
Joe Taylor ◽  
Elizabeth Lemm ◽  
Rachel Fell ◽  
...  

AbstractSignaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4389-4395 ◽  
Author(s):  
Freda K. Stevenson ◽  
Federico Caligaris-Cappio

Abstract The finding that chronic lymphocytic leukemia (CLL) consists of 2 clinical subsets, distinguished by the incidence of somatic mutations in the immunoglobulin (Ig) variable region (V) genes, has clearly linked prognosis to biology. Antigen encounter by the cell of origin is indicated in both subsets by selective but distinct expression of V genes, with evidence for continuing stimulation after transformation. The key to distinctive tumor behavior likely relates to the differential ability of the B-cell receptor (BCR) to respond. Both subsets may be undergoing low-level signaling in vivo, although analysis of blood cells limits knowledge of critical events in the tissue microenvironment. Analysis of signal competence in vitro reveals that unmutated CLL generally continues to respond, whereas mutated CLL is anergized. Differential responsiveness may reflect the increased ability of post-germinal center B cells to be triggered by antigen, leading to long-term anergy. This could minimize cell division in mutated CLL and account for prognostic differences. Unifying features of CLL include low responsiveness, expression of CD25, and production of immunosuppressive cytokines. These properties are reminiscent of regulatory T cells and suggest that the cell of origin of CLL might be a regulatory B cell. Continuing regulatory activity, mediated via autoantigen, could suppress Ig production and lead to disease-associated hypogammaglobulinemia. (Blood. 2004;103:4389-4395)


Sign in / Sign up

Export Citation Format

Share Document