scholarly journals The Embryonic Chick Femur Organotypic Model as a Tool to Analyze the Angiotensin II Axis on Bone Tissue

2021 ◽  
Vol 14 (5) ◽  
pp. 469
Author(s):  
Thais Francini Garbieri ◽  
Victor Martin ◽  
Carlos Ferreira dos Santos ◽  
Pedro de Sousa Gomes ◽  
Maria Helena Fernandes

Activation of renin–angiotensin system (RAS) plays a role in bone deterioration associated with bone metabolic disorders, via increased Angiotensin II (AngII) targeting Angiotensin II type 1 receptor/Angiotensin II type 2 receptor (AT1R/AT2R). Despite the wide data availability, the RAS role remains controversial. This study analyzes the feasibility of using the embryonic chick femur organotypic model to address AngII/AT1R/AT2R axis in bone, which is an application not yet considered. Embryonic day-11 femurs were cultured ex vivo for 11 days in three settings: basal conditions, exposure to AngII, and modulation of AngII effects by prior receptor blockade, i.e., AT1R, AT2R, and AT1R + AT2R. Tissue response was evaluated by combining µCT and histological analysis. Basal-cultured femurs expressed components of RAS, namely ACE, AT1R, AT2R, and MasR (qPCR analysis). Bone formation occurred in the diaphyseal region in all conditions. In basal-cultured femurs, AT1R blocking increased Bone Surface/Bone Volume (BS/BV), whereas Bone Volume/Tissue Volume (BV/TV) decreased with AT2R or AT1R + AT2R blockade. Exposure to AngII greatly decreased BV/TV compared to basal conditions. Receptor blockade prior to AngII addition prevented this effect, i.e., AT1R blockade induced BV/TV, whereas blocking AT2R caused lower BV/TV increase but greater BS/BV; AT1R + AT2R blockade also improved BV/TV. Concluding, the embryonic chick femur model was sensitive to three relevant RAS research setups, proving its usefulness to address AngII/AT1R/AT2R axis in bone both in basal and activated conditions.

2016 ◽  
Vol 130 (15) ◽  
pp. 1307-1326 ◽  
Author(s):  
Bryna S.M. Chow ◽  
Terri J. Allen

Angiotensin II (Ang II) is well-considered to be the principal effector of the renin–angiotensin system (RAS), which binds with strong affinity to the angiotensin II type 1 (AT1R) and type 2 (AT2R) receptor subtype. However, activation of both receptors is likely to stimulate different signalling mechanisms/pathways and produce distinct biological responses. The haemodynamic and non-haemodynamic effects of Ang II, including its ability to regulate blood pressure, maintain water–electrolyte balance and promote vasoconstriction and cellular growth are well-documented to be mediated primarily by the AT1R. However, its biological and functional effects mediated through the AT2R subtype are still poorly understood. Recent studies have emphasized that activation of the AT2R regulates tissue and organ development and provides in certain context a potential counter-regulatory mechanism against AT1R-mediated actions. Thus, this review will focus on providing insights into the biological role of the AT2R, in particular its actions within the renal and cardiovascular system.


2006 ◽  
Vol 169 (5) ◽  
pp. 1577-1589 ◽  
Author(s):  
Hirokazu Okada ◽  
Tsutomu Inoue ◽  
Tomohiro Kikuta ◽  
Yusuke Watanabe ◽  
Yoshihiko Kanno ◽  
...  

2004 ◽  
Vol 287 (1) ◽  
pp. H126-H134 ◽  
Author(s):  
Blair E. Cox ◽  
Timothy A. Roy ◽  
Charles R. Rosenfeld

Intravenous angiotensin II (ANG II) increases uterine vascular resistance (UVR), whereas uterine intra-arterial infusions do not. Type 2 ANG II (AT2) receptors predominate in uterine vascular smooth muscle; this may reflect involvement of systemic type 1 ANG II (AT1) receptor-mediated α-adrenergic activation. To examine this, we compared systemic pressor and UVR responses to intravenous phenylephrine and ANG II without and with systemic or uterine α-receptor blockade and in the absence or presence of AT1 receptor blockade in pregnant and nonpregnant ewes. Systemic α-receptor blockade inhibited phenylephrine-mediated increases in mean arterial pressure (MAP) and UVR, whereas uterine α-receptor blockade alone did not alter pressor responses and resulted in proportionate increases in UVR and MAP. Although neither systemic nor uterine α-receptor blockade affected ANG II-mediated pressor responses, UVR responses decreased >65% and also were proportionate to increases in MAP. Systemic AT1 receptor blockade inhibited all responses to intravenous ANG II. In contrast, uterine AT1 receptor blockade + systemic α-receptor blockade resulted in persistent proportionate increases in MAP and UVR. Uterine AT2 receptor blockade had no effects. We have shown that ANG II-mediated pressor responses reflect activation of systemic vascular AT1 receptors, whereas increases in UVR reflect AT1 receptor-mediated release of an α-agonist and uterine autoregulatory responses.


2002 ◽  
Vol 22 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Lan Wu ◽  
Masaru Iwai ◽  
Hironori Nakagami ◽  
Rui Chen ◽  
Jun Suzuki ◽  
...  

2009 ◽  
Vol 297 (5) ◽  
pp. G1019-G1027 ◽  
Author(s):  
Anna Casselbrant ◽  
Anders Edebo ◽  
Peter Hallersund ◽  
Emma Spak ◽  
Herbert F. Helander ◽  
...  

Only few studies have been devoted to the actions of the renin-angiotensin system (RAS) in the human gastrointestinal tract. The present study was undertaken to elucidate the expression and action of RAS in the human esophageal mucosa. Mucosal specimens with normal histological appearance were obtained from healthy subjects undergoing endoscopy and from patients undergoing esophagectomy due to neoplasm. Gene and protein expressions of angiotensin II (Ang II) receptor type 1 (AT1) and type 2 (AT2) and angiotensin-converting enzyme (ACE) were analyzed. In vivo functionality in healthy volunteers was reflected by assessing transmucosal potential difference (PD). Ussing chamber technique was used to analyze the different effects of Ang II on its AT1 and AT2 receptors. Immunoreactivity to AT1 and AT2 was localized to stratum superficiale and spinosum in the epithelium. ACE, AT1, and AT2 were found in blood vessel walls. Transmucosal PD in vivo increased following administration of the AT1 receptor antagonist candesartan. In Ussing preparations mean basal transmural PD was −6.4 mV, epithelial current ( Iep) 34 μA/cm2, and epithelial resistance ( Rep) 321 Ω·cm2. Serosal exposure to Ang II increased PD as a result of increased Iep, whereas Rep was constant. Ang II given together with the selective AT1-receptor antagonist losartan, or AT2 agonist C21 given alone, resulted in a similar effect. Ang II given in presence of the AT2-receptor antagonist PD123319 did not influence PD, but Iep decreased and Rep increased. In conclusion, Ang II receptors and ACE are expressed in the human esophageal epithelium. The results suggest that AT2-receptor stimulation increases epithelial ion transport, whereas the AT1 receptor inhibits ion transport and increases Rep.


Sign in / Sign up

Export Citation Format

Share Document