scholarly journals Graft Preservation Solution DuraGraft® Alleviates Vascular Dysfunction Following In Vitro Ischemia/Reperfusion Injury in Rats

2021 ◽  
Vol 14 (10) ◽  
pp. 1028
Author(s):  
Sevil Korkmaz-Icöz ◽  
Belinda Ballikaya ◽  
Jasmin Soethoff ◽  
Patricia Kraft ◽  
Alex Ali Sayour ◽  
...  

Vascular ischemia/reperfusion injury (IRI) in patients undergoing coronary artery bypass grafting can result in graft failure and the need for repeat revascularization procedures. DuraGraft® has been shown to protect structure and function in saphenous vein grafts against IRI. We compared the effect of DuraGraft® to saline solution on arterial grafts submitted to IRI. Rat thoracic aortic rings were harvested and immediately mounted in organ bath chambers (control, n = 7 rats) or underwent cold ischemic preservation either in saline (IR, n = 9 rats) or DuraGraft® (IR+Dura, n = 9 rats). Vascular function was measured ex vivo and immunohistochemistry was performed. Impaired maximum vasorelaxation (Rmax) to ACh in the IR-group compared to controls was ameliorated by DuraGraft®, indicating an improvement in endothelial function (Rmax to ACh (%): IR + Dura 73 ± 2 vs. IR 48 ± 3, p < 0.05). Additionally, decreased aortic ring sensitivity to ACh (pD2-value: -log 50% maximum response) seen after IR in the saline group was increased by DuraGraft® (pD2 to ACh: IR+Dura 7.1 ± 0.1 vs. IR 6.3 ± 0.2, p < 0.05). Impaired maximum contractile response to phenylephrine and high potassium chloride concentrations in the IR group compared to controls was significantly improved by DuraGraft®. DuraGraft® alleviates vascular dysfunction following IRI by reducing nitro-oxidative stress and the expression of ICAM-1, without leukocytes engagement.

2021 ◽  
Vol 22 (15) ◽  
pp. 7774
Author(s):  
Sevil Korkmaz-Icöz ◽  
Cenk Kocer ◽  
Alex A. Sayour ◽  
Patricia Kraft ◽  
Mona I. Benker ◽  
...  

Vascular ischemia/reperfusion injury (IRI) contributes to graft failure and adverse clinical outcomes following coronary artery bypass grafting. Sodium-glucose-cotransporter (SGLT)-2-inhibitors have been shown to protect against myocardial IRI, irrespective of diabetes. We hypothesized that adding canagliflozin (CANA) (an SGLT-2-inhibitor) to saline protects vascular grafts from IRI. Aortic rings from non-diabetic rats were isolated and immediately mounted in organ bath chambers (control, n = 9–10 rats) or underwent cold ischemic preservation in saline, supplemented either with a DMSO vehicle (IR, n = 8–10 rats) or 50µM CANA (IR + CANA, n = 9–11 rats). Vascular function was measured, the expression of 88 genes using PCR-array was analyzed, and feature selection using machine learning was applied. Impaired maximal vasorelaxation to acetylcholine in the IR-group compared to controls was significantly ameliorated by CANA (IR 31.7 ± 3.2% vs. IR + CANA 51.9 ± 2.5%, p < 0.05). IR altered the expression of 17 genes. Ccl2, Ccl3, Ccl4, CxCr4, Fos, Icam1, Il10, Il1a and Il1b have been found to have the highest interaction. Compared to controls, IR significantly upregulated the mRNA expressions of Il1a and Il6, which were reduced by 1.5- and 1.75-fold with CANA, respectively. CANA significantly prevented the upregulation of Cd40, downregulated NoxO1 gene expression, decreased ICAM-1 and nitrotyrosine, and increased PECAM-1 immunoreactivity. CANA alleviates endothelial dysfunction following IRI.


2008 ◽  
Vol 74 (8) ◽  
pp. 1009-1016 ◽  
Author(s):  
Atsunori Nakao ◽  
Gaetano Faleo ◽  
Hiroko Shimizu ◽  
Kiichi Nakahira ◽  
Junichi Kohmoto ◽  
...  

2021 ◽  
Vol 9 (6) ◽  
Author(s):  
Briana K. Shimada ◽  
Naaiko Yorichika ◽  
Jason K. Higa ◽  
Yuichi Baba ◽  
Motoi Kobayashi ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xutong Li ◽  
Ye Zhang ◽  
Yong Wang ◽  
Dan Zhao ◽  
Chengcheng Sun ◽  
...  

Background. Ischemic stroke is a severe acute cerebrovascular disease which can be improved with neuroprotective therapies at an early stage. However, due to the lack of effective neuroprotective drugs, most stroke patients have varying degrees of long-term disability. In the present study, we investigated the role of exosomes derived from CXCR4-overexpressing BMSCs in restoring vascular function and neural repair after ischemic cerebral infarction. Methods. BMSCs were transfected with lentivirus encoded by CXCR4 (BMSCCXCR4). Exosomes derived from BMSCCXCR4 (ExoCXCR4) were isolated and characterized by transmission electron microscopy and dynamic light scattering. Western blot and qPCR were used to analyze the expression of CXCR4 in BMSCs and exosomes. The acute middle cerebral artery occlusion (MCAO) model was prepared, ExoCXCR4 were injected into the rats, and behavioral changes were analyzed. The role of ExoCXCR4 in promoting the proliferation and tube formation for angiogenesis and protecting brain endothelial cells was determined in vitro. Results. Compared with the control groups, the ExoCXCR4 group showed a significantly lower mNSS score at 7 d, 14 d, and 21 d after ischemia/reperfusion ( P < 0.05 ). The bEnd.3 cells in the ExoCXCR4 group have stronger proliferation ability than other groups ( P < 0.05 ), while the CXCR4 inhibitor can reduce this effect. Exosomes control (ExoCon) can significantly promote the migration of bEnd.3 cells ( P < 0.05 ), while there was no significant difference between the ExoCXCR4 and ExoCon groups ( P > 0.05 ). ExoCXCR4 can further promote the proliferation and tube formation for the angiogenesis of the endothelium compared with ExoCon group ( P < 0.05 ). In addition, cobalt chloride (COCl2) can increase the expression of β-catenin and Wnt-3, while ExoCon can reduce the expression of these proteins ( P < 0.05 ). ExoCXCR4 can further attenuate the activation of Wnt-3a/β-catenin pathway ( P < 0.05 ). Conclusions. In ischemia/reperfusion injury, ExoCXCR4 promoted the proliferation and tube formation of microvascular endothelial cells and play an antiapoptotic role via the Wnt-3a/β-catenin pathway.


Author(s):  
Meredith A. Redd ◽  
Sarah E. Scheuer ◽  
Natalie J. Saez ◽  
Yusuke Yoshikawa ◽  
Han Sheng Chiu ◽  
...  

Background: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the build-up of acidic metabolites results in decreased intracellular and extracellular pH that can reach as low as 6.0-6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly impacts cardiac function. Methods: We used genetic and pharmacological methods to investigate the role of acid sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole organ level. Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and post-conditioning therapeutic agents. Results: Analysis of human complex trait genetics indicate that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using hiPSC-CMs in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacological inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction (MI) and two models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as pre- or post-conditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no impact on cardiac ion channels regulating baseline electromechanical coupling and physiological performance. Conclusions: Collectively, our data provide compelling evidence for a novel pharmacological strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.


Gene ◽  
2019 ◽  
Vol 701 ◽  
pp. 89-97 ◽  
Author(s):  
Anne Sophie Kruit ◽  
Laura Smits ◽  
Angéle Pouwels ◽  
Marie-Claire J.M. Schreinemachers ◽  
Stefan L.M. Hummelink ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3132 ◽  
Author(s):  
Julia Hofmann ◽  
Giorgi Otarashvili ◽  
Andras Meszaros ◽  
Susanne Ebner ◽  
Annemarie Weissenbacher ◽  
...  

Mitochondria sense changes resulting from the ischemia and subsequent reperfusion of an organ and mitochondrial reactive oxygen species (ROS) production initiates a series of events, which over time result in the development of full-fledged ischemia-reperfusion injury (IRI), severely affecting graft function and survival after transplantation. ROS activate the innate immune system, regulate cell death, impair mitochondrial and cellular performance and hence organ function. Arresting the development of IRI before the onset of ROS production is currently not feasible and clinicians are faced with limiting the consequences. Ex vivo machine perfusion has opened the possibility to ameliorate or antagonize the development of IRI and may be particularly beneficial for extended criteria donor organs. The molecular events occurring during machine perfusion remain incompletely understood. Accumulation of succinate and depletion of adenosine triphosphate (ATP) have been considered key mechanisms in the initiation; however, a plethora of molecular events contribute to the final tissue damage. Here we discuss how understanding mitochondrial dysfunction linked to IRI may help to develop novel strategies for the prevention of ROS-initiated damage in the evolving era of machine perfusion.


2018 ◽  
Vol 29 (3) ◽  
pp. 961-976 ◽  
Author(s):  
Qi Cao ◽  
Yiping Wang ◽  
Zhiguo Niu ◽  
Chengshi Wang ◽  
Ruifeng Wang ◽  
...  

The IL-33-type 2 innate lymphoid cell (ILC2) axis has an important role in tissue homeostasis, inflammation, and wound healing. However, the relative importance of this innate immune pathway for immunotherapy against inflammation and tissue damage remains unclear. Here, we show that treatment with recombinant mouse IL-33 prevented renal structural and functional injury and reduced mortality in mice subjected to ischemia-reperfusion injury (IRI). Compared with control-treated IRI mice, IL-33–treated IRI mice had increased levels of IL-4 and IL-13 in serum and kidney and more ILC2, regulatory T cells (Tregs), and anti-inflammatory (M2) macrophages. Depletion of ILC2, but not Tregs, substantially abolished the protective effect of IL-33 on renal IRI. Adoptive transfer of ex vivo–expanded ILC2 prevented renal injury in mice subjected to IRI. This protective effect associated with induction of M2 macrophages in kidney and required ILC2 production of amphiregulin. Treatment of mice with IL-33 or ILC2 after IRI was also renoprotective. Furthermore, in a humanized mouse model of renal IRI, treatment with human IL-33 or transfer of ex vivo–expanded human ILC2 ameliorated renal IRI. This study has uncovered a major protective role of the IL-33–ILC2 axis in renal IRI that could be potentiated as a therapeutic strategy.


Sign in / Sign up

Export Citation Format

Share Document