scholarly journals PEGylated Nanographene Oxide in Combination with Near-Infrared Laser Irradiation as a Smart Nanocarrier in Colon Cancer Targeted Therapy

Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 424
Author(s):  
Milena Georgieva ◽  
Zlatina Gospodinova ◽  
Milena Keremidarska-Markova ◽  
Trayana Kamenska ◽  
Galina Gencheva ◽  
...  

Anti-cancer therapies that integrate smart nanomaterials are the focus of cancer research in recent years. Here, we present our results with PEGylated nanographene oxide particles (nGO-PEG) and have studied their combined effect with near-infrared (NIR) irradiation on low and high invasive colorectal carcinoma cells. The aim is to develop nGO-PEG as a smart nanocarrier for colon cancer-targeted therapy. For this purpose, nGO-PEG nanoparticles’ size, zeta potential, surface morphology, dispersion stability, aggregation, and sterility were determined and compared with pristine nGO nanoparticles (NPs). Our results show that PEGylation increased the particle sizes from 256.7 nm (pristine nGO) to 324.6 nm (nGO-PEG), the zeta potential from −32.9 to −21.6 mV, and wrinkled the surface of the nanosheets. Furthermore, nGO-PEG exhibited higher absorbance in the NIR region, as compared to unmodified nGO. PEGylated nGO demonstrated enhanced stability in aqueous solution, improved dispensability in the culture medium, containing 10% fetal bovine serum (FBS) and amended biocompatibility. A strong synergic effect of nGO-PEG activated with NIR irradiation for 5 min (1.5 W/cm−2 laser) was observed on cell growth inhibition of low invasive colon cancer cells (HT29) and their wound closure ability while the effect of NIR on cellular morphology was relatively weak. Our results show that PEGylation of nGO combined with NIR irradiation holds the potential for a biocompatible smart nanocarrier in colon cancer cells with enhanced physicochemical properties and higher biological compatibility. For that reason, further optimization of the irradiation process and detailed screening of nGO-PEG in combination with NIR and chemotherapeutics on the fate of the colon cancer cells is a prerequisite for highly efficient combined nanothermal and photothermal therapy for colon cancer.

2019 ◽  
Vol 25 (12) ◽  
pp. 1385-1391 ◽  
Author(s):  
Caichuan Yan ◽  
Fengmei Li ◽  
Yuhao Zhang ◽  
Yang Li ◽  
Mingzhu Li ◽  
...  

Background: As2O3 and resveratrol have been widely considered to be effective in anti-cancer therapies and the underlying mechanisms have been reported extensively. However, the combined treatment effect and potential target of As2O3 and resveratrol in the treatment of tumors remains elusive. The purpose of this study was to investigate the benefits and efficacy of As2O3 in combination with resveratrol in the treatment of colon cancer, as well as looking for new targets that could provide alternative explanation of the efficacy of drugs. Methods: The proliferation of cancer cells was measured by the MTT and EdU staining assay, while the apoptosis of cancer cells was determined by the flow cytometry. Western blot and immunoprecipitation were performed to measure the expression levels of proteins and the interaction between hERG and integrin β1, respectively. Results: In this study, we found that both As2O3 and resveratrol can effectively inhibit cell proliferation and promote cell apoptosis in colon cancer, and the combined effect of the two drugs on colon cancer cells is more preeminent. The combination of As2O3 with resveratrol, on the one hand reduced the expression of hERG channels on the membrane, and on the other hand weaken the binding between hERG and integrin β 1, which may be the main cause of downstream signaling pathways alterations, including the activation of the apoptotic pathway. Conclusion: Taken together, hERG, as a subunit of potassium ion channel on the cell membrane, is highly likely to be involved in the As2O3 and resveratrol induced intracellular signaling cascade disorder, and this novel signaling pathway that sustains the progression of colon cancer may be a promising therapeutic target for human colon cancer treatment in the future.


1991 ◽  
Vol 27 (7) ◽  
pp. 521-522
Author(s):  
Danièle Reisser ◽  
Francois Martin ◽  
Marie-France Michel

2001 ◽  
Vol 120 (5) ◽  
pp. A493-A493
Author(s):  
J HARDWICK ◽  
G VANDENBRINK ◽  
S VANDEVENTER ◽  
M PEPPELENBOSCH

Endoscopy ◽  
2005 ◽  
Vol 37 (05) ◽  
Author(s):  
GA Doherty ◽  
SM Byrne ◽  
SC Austin ◽  
GM Scully ◽  
EW Kay ◽  
...  

Author(s):  
Mayson H. Alkhatib ◽  
Dalal Al-Saedi ◽  
Wadiah S. Backer

The combination of anticancer drugs in nanoparticles has great potential as a promising strategy to maximize efficacies by eradicating resistant, reduce the dosage of the drug and minimize toxicities on the normal cells. Gemcitabine (GEM), a nucleoside analogue, and atorvastatin (ATV), a cholesterol lowering agent, have shown anticancer effect with some limitations. The objective of this in vitro study was to evaluate the antitumor activity of the combination therapy of GEM and ATVencapsulated in a microemulsion (ME) formulation in the HCT116 colon cancer cells. The cytotoxicity and efficacy of the formulation were assessed by the 3- (4,5dimethylthiazole-2-yl)-2,5-diphyneltetrazolium bromide (MTT) assay. The mechanism of cell death was examined by observing the morphological changes of treated cells under light microscope, identifying apoptosis by using the ApopNexin apoptosis detection kit, and viewing the morphological changes in the chromatin structure stained with 4′,6-diamidino-2-phenylindole (DAPI) under the inverted fluorescence microscope. It has been found that reducing the concentration of GEM loaded on ME (GEM-ME) from 5μM to 1.67μM by combining it with 3.33μM of ATV in a ME formulation (GEM/2ATV-ME) has preserved the strong cytotoxicity of GEM-ME against HCT116 cells. The current study proved that formulating GEM with ATV in ME has improved the therapeutic potential of GEM and ATV as anticancer drugs.


Sign in / Sign up

Export Citation Format

Share Document