scholarly journals Evaluation and Comparison of Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Vectors to Develop Hydrochlorothiazide Effective and Safe Pediatric Oral Liquid Formulations

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 437
Author(s):  
Paola Mura ◽  
Francesca Maestrelli ◽  
Mario D’Ambrosio ◽  
Cristina Luceri ◽  
Marzia Cirri

The aim of this study was the optimization of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in terms of physicochemical and biopharmaceutical properties, to develop effective and stable aqueous liquid formulations of hydrochlorothiazide, suitable for paediatric therapy, overcoming its low-solubility and poor-stability problems. Based on solubility studies, Precirol® ATO5 and Transcutol® HP were used as solid and liquid lipids, respectively. The effect of different surfactants, also in different combinations and at different amounts, on particle size, homogeneity and surface-charge of nanoparticles was carefully investigated. The best formulations were selected for drug loading, and evaluated also for entrapment efficiency and release behaviour. For both SLN and NLC series, the use of Gelucire® 44/14 as surfactant rather than PluronicF68 or Tween® 80 yielded a marked particle size reduction (95–75 nm compared to around 600–400 nm), and an improvement in entrapment efficiency and drug release rate. NLC showed a better performance than SLN, reaching about 90% entrapped drug (vs. 80%) and more than 90% drug released after 300 min (vs. about 65%). All selected formulations showed good physical stability during 6-month storage at 4 °C, but a higher loss of encapsulated drug was found for SLNs (15%) than for NLCs (<5%). Moreover, all selected formulations revealed the absence of any cytotoxic effect, as assessed by a cell-viability test on Caco-2 cells and are able to pass the intestinal epithelium as suggested by Caco-2 uptake experiments.

Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2021 ◽  
Author(s):  
Burcu Üner ◽  
Samet Özdemir ◽  
Çetin Taş ◽  
Yıldız Özsoy ◽  
Melike Üner

Abstract Purpose Loteprednol etabonate (LE) is a new generation corticosteroid that is used for the treatment of inflammatory and allergic conditions of the eye, and management of seasonal allergic rhinitis nasally. LE which is a poorly soluble drug with insufficient bioavailability, has a high binding affinity to steroid receptors. Sophisticated colloidal drug delivery systems of LE could present an alternative for treatment of inflammatory and allergic conditions of the skin. For this purpose, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were attempted to improve for transdermal LE delivery for the first time. Methods SLN and NLC were produced by hot homogenization and ultrasonication technique. Formulations were characterized by dynamic light scattering, scanning electron microscopy, fourier transform infrared spectroscopy and differential scanning calorimetry. Their physical stability was monitored for 3 months of storage. Drug release profiles and permeation properties of SLN and NLC through the porcine skin were investigated. Results It was determined that SLN and NLC below 150 nm particle size had a homogeneous particle size distribution as well as high drug loading capacities. They were found to be stable both physically and chemically at room temperature for 90 days. In terms of release kinetics, it was determined that they released from SLN and NLC in accordance with Fickian diffusion release. Formulations prepared in this study were seen to significantly increase drug penetration through pig skin compared to the control group (p ≤ 0.05). Conclusion SLN and NLC formulations of LE can be stated among the systems that can be an alternative to conventional systems with less side-effect profile in the treatment of inflammatory problems on the skin.


2018 ◽  
Vol 8 (6) ◽  
pp. 125-131
Author(s):  
Indrayani D. Raut ◽  
Rajendra C. Doijad ◽  
Shrinivas K. Mohite ◽  
Arehalli S. Manjappa

Cisplatin (Cis diaminedichloro platinum) was the first platinum drug to be used as an anticancer drug, and it is widely used in the treatment of testicular, head, neck, ovarian and lung cancer. The use of Cisplatin is limited due to its intrinsic and acquired resistance and severe side effects such as chronic neurotoxicity and nephrotoxicity. The colloidal carriers such as emulsion, liposomes, polymeric nanoparticles have been extensively studied to overcome above limitations. The solid lipid nanoparticles (SLNs), amongst other colloidal carriers, were found to be an ideal carrier for lipophillic drug for better stability and release retardation. Cisplatin loaded solid lipid nanoparticles was prepared by microemulsion technique. Stearic acid was used as lipid. The other excipients were used as DPPG, Soya lecithin and Poloxamer P407  and acidic buffer  PH4. Also used Probe sonication for 10 min at 79 Amplitude. Cisplatin SLNs Batch C13 showed particle size of 119.23±1.52 nm, Zeta potential of -37.33±2.47 mV, % Entrapment efficiency of  90.2 ± 2.1 %., % Drug loading capacity of 1.62 ± 1.34 %., The TEM study of optimized Cisplatin SLN illustrated the spherical shape of nanoparticles. Total release amount of Cisplatin was 82.62± 2.04 % after 48 hrs. The formulation performed kinetics study followed Peppas plot equation The SLNs of Cisplatin met all the requirements of a colloidal drug delivery system. They had particle size in nanosize; their size distribution was narrow and all the particles were in spherical shape and stable. Keywords: Cisplatin, Solid Lipid nanoparticles, zeta potential, Particle size, Transmission electron Microscopy.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 66-75
Author(s):  
Kumara Swamy Samanthula ◽  
Ramesh Alli ◽  
Thirupathi Gorre

Ropinirole (RP), is a selective dopamine agonist that is used alone or with other medications to treat the symptoms of Parkinson’s disease (PD). RP has low bioavailability of only about 50% due to the first-pass metabolism, and it requires frequent dosing during oral administration. The objective of the current research was to develop RP loaded solid lipid nanoparticles (RP-SLNs), nanostructured lipid carriers (RP-NLCs), and their corresponding hydrogels (RP-SLN-C and RP-NLC-C) that might improve efficacy in PD treatment. RP nanoparticles were prepared by homogenization aided probe sonication method and optimized based on particle size, polydispersity index (PDI), zeta potential (ZP), assay, entrapment efficiency, and in vitro release studies. Optimized formulations were converted to hydrogel formulations using Carbopol 934 as a gelling polymer and optimized based on rheological and release characteristics. Optimized formulations were further evaluated using differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), freeze-drying, and stability study at refrigerated and room temperatures. The optimized RP-SLN formulation showed particle size and entrapment efficiency of 213.5±3.8 nm and 77.9±3.1% compared to 190.6±3.7 nm and 85.7±1.7% for optimized RP-NLC formulation. PXRD supplemented and confirmed DSC results, RP was entrapped in a molecularly dispersed state inside the core of the lipid nanocarrier. Furthermore, RP loaded lipid nanocarriers revealed a spherical shape in SEM images. In vitro release studies demonstrated sustained release profiles for RP from SLNs, NLCs, and their hydrogels over 24 h and were stable over three months at 4ºC and 25ºC storage conditions. Keywords: Parkinson’s disease, Ropinirole, Solid lipid nanoparticles, Nanostructured lipid carriers, Hydrogel.


2021 ◽  
Vol 11 ◽  
Author(s):  
Vaibhav Rajoriya ◽  
Varsha Kashaw ◽  
Sushil Kumar Kashaw

Objective: The current paper represents the development, optimization, and characterization of paclitaxel-loaded folate conjugated solid lipid nanoparticles (FA-SLNs). Methods: The ligand (FA-SLNs) conjugated and non-conjugated SLNs (PTX-SLNs) were prepared by hot homogenization method. Both of the formulations (FA-SLNs and PTX-SLNs) were optimized with various parameters i.e. drug loading, stirring time, stirring speed, particle size, and polydispersity index, and characterized. The in-vitro drug release study was performed in different pH environments by using the dialysis bag method. The surface morphology and particle size were determined through scanning electron micorscopy and Transmission Electron Microscopy respectively, The SLNs formulations were also evaluated for the stability study. Result: The particle size of PTX-SLNs and FA-SLNs was determined and found to be 190.1±1.9 and 231.3±2.3 nm respectively. The surface morphology of the SLNs indicates that the prepared formulations are round-shaped and show smooth surfaces. The TEM study indicated that particles were in the range of 100-300 nm. The entrapment efficiency and drug loading capacity of FA-SLNs were found to be 79.42±1.6% and 17.3±1.9%, respectively. In-vitro drug release study data, stated that the optimum drug release was found in an acidic environment at pH 4.0, that showed 94.21% drug release after 16 hours and it proves that optimized formulation FA-SLNs will gave the sustained and better release in tumor tissue that owing acidic environment because of the angiogenesis process. Conclusion: In this research paper, different formulation parameters, found to influence fabrication of drug into Solid lipid nanoparticles, were optimized for high entrapment efficiency and drug loading. The most important parameters were drug:lipid ratio, drug:polymer ratio and lipid: surfactant ratio. Higher in-vitro drug release was observed in pH 4 as compared to the pH 7.4. These result data concludes that FA-SLNs formulation was successfully prepared, optimized and characterized.


2012 ◽  
Vol 506 ◽  
pp. 389-392 ◽  
Author(s):  
N. Ratcharin ◽  
P. Wongtrakul ◽  
Ratana Indranupakorn

Solid lipid nanoparticles (SLNs) loaded ginger extract were prepared by microemulsion technique. The nanoparticles were composed of stearic acid as solid lipids, Cremophor RH 40 as surfactant and ethanol as co-surfactant. It was found that variation in the amount of surfactant and co-surfactant had profound effects on the mean particle size, the drug entrapment efficiency and loading capacity. Transmission electron microscope (TEM) revealed the spherical nature of the particles. The mean particle size of SLNs ranging between 453.1 and 551.7 nm were measured by dynamic light scattering (DLS). The entrapment efficiency (EE) and drug loading capacity (LC) determined by high performance liquid chromatography (HPLC) found to be in the range of 85.2390.07% and 1.411.49%, respectively.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


2020 ◽  
Vol 10 (4) ◽  
pp. 404-418
Author(s):  
Kruti Borderwala ◽  
Ganesh Swain ◽  
Namrata Mange ◽  
Jaimini Gandhi ◽  
Manisha Lalan ◽  
...  

Background: The objective of this study was to develop solid lipid nanoparticles (SLNs) of poorly water soluble anti-hyperlipidemic drugs-Ezetimibe in combination with Simvastatin. Methods: This study describes a 32 full factorial experimental design to optimize the formulation of drug loaded lipid nanoparticles (SLN) by the high speed homogenization technique. The independent variables amount of lipid (GMS) and amount of surfactant (Poloxamer 188) were studied at three levels and arranged in a 32 factorial design to study the influence on the response variables- particle size, % entrapment efficiency (%EE) and cumulative drug release (% CDR) at 24 h. Results: The particle size, % EE and % CDR at 24 h for the 9 batches (B1 to B9) showed a wide variation of 104.6-496.6 nm, 47.80-82.05% (Simvastatin); 48.60-84.23% (Ezetimibe) and 54.64-92.27% (Simvastatin); 43.8-97.1% (Ezetimibe), respectively. The responses of the design were analysed using Design Expert 10.0.2. (Stat-Ease, Inc, USA), and the analytical tools of software were used to draw response surface plots. From the statistical analysis of data, polynomial equations were generated. Optimized formulation showed particle size of 169.5 nm, % EE of 75.43% (Simvastatin); 79.10% (Ezetimibe) and 74.13% (Simvastatin); 77.11% (Ezetimibe) %CDR after 24 h. Thermal analysis of prepared solid lipid nanoparticles gave indication of solubilisation of drugs within lipid matrix. Conclusion: Fourier Transformation Infrared Spectroscopy (FTIR) showed the absence of new bands for loaded solid lipid nanoparticles indicating no interaction between drugs and lipid matrix and being only dissolved in it. Electron microscope of transmission techniques indicated sphere form of prepared solid lipid nanoparticles with smooth surface with size approximately around 100 nm.


2020 ◽  
Vol 19 (5) ◽  
pp. 909-918
Author(s):  
Saqer Alarifi ◽  
Salam Massadeh ◽  
Mohammed Al-Agamy ◽  
Manal A.l. Aamery ◽  
Abdulkareem Al Bekairy ◽  
...  

Purpose: To incorporate ciprofloxacin (CIP) into solid lipid nanoparticles (SLN) in order to enhance its biopharmaceutical properties and antibacterial activity.Methods: A sonication melt-emulsification method was employed for the preparation of CIP-loaded SLN. The composition of the SLN was varied in order to investigate factors such as lipid type and combination ratio, drug to lipid ratio, and surfactant ratio. The produced SLN formulations wereevaluated for their particle size and shape, zeta potential, and entrapment efficiency. In addition, the effect of SLN formulation composition on its drug release profile and antimicrobial activity against Escherichia coli, Pseudomonas Aeruginosa, and Staphylococcus Aureus was also investigated.Results: The generated nanoparticles had particle size in the range of 165 to 320 nm. The zetapotential values were generally low within ± 5. All formulations exhibited entrapment efficiency between 50 and 90 %. CIP release exhibited a biphasic release profile with a low burst phase, followed by uniform controlled-release behavior of various rates. SLN-loaded CIP exhibited one-fold reduction in minimum inhibitory concentration (MIC) and caused significant inhibition of all the three bacterial strains tested, when compared with pure CIP.Conclusion: Loading of CIP into SLN significantly enhances its antimicrobial activity in vitro which can translate to significant enhancement of therapeutic outcomes by minimizing the dose-dependent adverse and side effects and/or enhancing the antimicrobial spectrum of activity. Keywords: Solid lipid nanoparticles, Sonication melt-emulsification, Ciprofloxacin, Escherichia coli, Pseudomonas aeruginosa


Author(s):  
M. Yasmin Begum ◽  
Prathyusha Reddy Gudipati

Objective: The aim of present work was to formulate and evaluate Dasatinib (DST) loaded solid lipid nanoparticles (SLNs) as a potential anticancer drug delivery system by enhancing its solubility.Methods: SLNs consist of a solid lipid matrix where the drug was incorporated. Surfactants of GRAS grade were used to avoid aggregation and to stabilize the SLNs. DST-SLNs formulations of varying concentrations were prepared by high speed homogenization technique and evaluated for drug excipients compatibility study, poly-dispersity index, particle size analysis, surface morphology, zeta potential and drug release features.Results: It was observed that DST-SLNs with optimum quantities of poloxomer: lecithin ratio showed 88.06% drug release in 6h with good entrapment efficiency of 76.9±0.84 %. Particle size, Poly dispersity index, zeta potential and drug entrapment efficiency for the optimized formulation was found to be optimum. Stability studies revealed that the entrapment efficiency of the SLN dispersion stored in 4 °C was stable.Conclusion: Thus, it can be concluded that formulations of DST loaded SLNs are suitable carriers for improving the solubility and dissolution related problems. 


Sign in / Sign up

Export Citation Format

Share Document