Abietic acid attenuates allergic airway inflammation in a mouse allergic asthma model

2016 ◽  
Vol 38 ◽  
pp. 261-266 ◽  
Author(s):  
Yi Gao ◽  
Liu Zhaoyu ◽  
Fang Xiangming ◽  
Lin Chunyi ◽  
Pan Jiayu ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1763
Author(s):  
Núbia Sabrina Martins ◽  
Thais Fernanda de Campos Fraga-Silva ◽  
Giseli Furlan Correa ◽  
Mèdéton Mahoussi Michaël Boko ◽  
Leandra Naira Zambelli Ramalho ◽  
...  

Propolis is a natural product produced by bees that is primarily used in complementary and alternative medicine and has anti-inflammatory, antibacterial, antiviral, and antitumoral biological properties. Some studies have reported the beneficial effects of propolis in models of allergic asthma. In a previous study, our group showed that green propolis treatment reduced airway inflammation and mucus secretion in an ovalbumin (OVA)-induced asthma model and resulted in increased regulatory T cells (Treg) and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) frequencies in the lungs, two leukocyte populations that have immunosuppressive functions. In this study, we evaluated the anti-inflammatory effects of artepillin C (ArtC), the major compound of green propolis, in the context of allergic airway inflammation. Our results show that ArtC induces in vitro differentiation of Treg cells and monocytic MDSC (M-MDSC). Furthermore, in an OVA-induced asthma model, ArtC treatment reduced pulmonary inflammation, eosinophil influx to the airways, mucus and IL-5 secretion along with increased frequency of M-MDSC, but not Treg cells, in the lungs. Using an adoptive transfer model, we confirmed that the effect of ArtC in the reduction in airway inflammation was dependent on M-MDSC. Altogether, our data show that ArtC exhibits an anti-inflammatory effect and might be an adjuvant therapy for allergic asthma.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingru Wang ◽  
Shengnan Gao ◽  
Jingyuan Zhang ◽  
Chunxiao Li ◽  
Hongwen Li ◽  
...  

Abstract Background Allergic asthma is a chronic airway inflammatory disease with a number of cytokines participating in its pathogenesis and progress. Interleukin (IL)-22, which is derived from lymphocytes, acts on epithelial cells and play a role in the chronic airway inflammation. However, the actual role of IL-22 in allergic asthma is still unclear. Therefore, we explored the effect of IL-22 on allergic airway inflammation and airway hyperresponsiveness (AHR) in an ovalbumin (OVA)-induced asthma mouse model. Methods To evaluate the effect of IL-22 in an allergic asthma model, BALB/c mice were sensitized and challenged with OVA; then the recombinant mouse IL-22 was administered intranasally 24 h prior to each challenge. The IL-22 levels in lung homogenates and bronchoalveolar lavage fluid (BALF) were measured by enzyme linked immunosorbent assay, respectively. AHR was evaluated through indicators including airways resistance (Rrs), elastance (Ers) and compliance (Crs); the inflammatory cell infiltration was assessed by quantification of differential cells counts in BALF and lung tissues stained by hematoxylin and eosin (H&E); IL-22 specific receptors were determined by immunohistochemistry staining. Results The concentration of IL-22 was significantly elevated in the OVA-induced mice compared with the control mice in lung homogenates and BALF. In the OVA-induced mouse model, IL-22 administration could significantly attenuate AHR, including Rrs, Ers and Crs, decrease the proportion of eosinophils in BALF and reduce inflammatory cell infiltration around bronchi and their concomitant vessels, compared with the OVA-induced group. In addition, the expression of IL-22RA1 and IL-10RB in the lung tissues of OVA-induced mice was significantly increased compared with the control mice, while it was dramatically decreased after the treatment with IL-22, but not completely attenuated in the IL-22-treated mice when compared with the control mice. Conclusion Interleukin-22 could play a protective role in an OVA-induced asthma model, by suppressing the inflammatory cell infiltration around bronchi and their concomitant vessels and airway hyperresponsiveness, which might associate with the expression of its heterodimer receptors. Thus, IL-22 administration might be an effective strategy to attenuate allergic airway inflammation.


2010 ◽  
Vol 33 (3) ◽  
pp. 196 ◽  
Author(s):  
Xia Ke ◽  
Jiangju Huang ◽  
Quan Chen ◽  
Suling Hong ◽  
Daoyin Zhu

Purpose. Allergic asthma is characterized by chronic airway inflammation and airway hyperresponsiveness driven by allergen-specific T helper (Th)2 cells. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination has been documented to suppress Th2 responses and allergic airway inflammation in animal models. Since interleukin (IL)-12 is capable of inhibiting Th2 responses, we sought to investigate whether IL-12 could function as an adjuvant to increase the efficacy of BCG vaccination against allergic asthma. Methods. BALB/c neonatal mice (24 mice, 48-72 h old) were randomly divided into 3 subgroups (n = 8 for each group) to be immunized with PBS (control) or BCG with or without DNA plasmid-expressing IL-12. All of the mice were then sensitized and provoked with ovalbumin (OVA) to establish a model of allergic asthma. Results. Mice vaccinated with BCG alone showed a significant reduction in airway inflammation, percentage of eosinophils in bronchoalveolar lavage (BAL) fluid, and serum OVA-specific immunoglobulin E (IgE) levels in comparison with control animals. The suppressive effects of BCG were substantially augmented by the combination with IL-12. Furthermore, a decreased IL-4 and increased interferon-gamma (IFN-γ) production in BAL fluid were observed in animals inoculated with BCG alone or with IL-12 relative to control animals. Conclusion. Our data indicate that the combined vaccination with BCG and IL-12 yields a favorable outcome in prevention of experimental allergic airway inflammation, which is likely mediated through triggering a shift from a Th2 response to a Th1 response.


2020 ◽  
Vol 119 (11) ◽  
pp. 3719-3728
Author(s):  
Vanessa Fey Pascoal ◽  
Aline Andrea da Cunha ◽  
Alessandra Loureiro Morassutti ◽  
Géssica Luana Antunes ◽  
Keila Abreu da Silveira ◽  
...  

2017 ◽  
Vol 1 (S1) ◽  
pp. 3-3
Author(s):  
Timothy P. Moran ◽  
Robert M. Immormino ◽  
Hideki Nakano ◽  
David Peden ◽  
Donald N. Cook

OBJECTIVES/SPECIFIC AIMS: Allergic asthma is a chronic lung disease driven by inappropriate inflammatory responses against inhaled allergens. Neuropilin-2 (NRP2) is a pleiotropic transmembrane receptor expressed in the lung, but its role in allergic airway inflammation is unknown. Here, we characterized NRP2 expression in lung immune cells and investigated the effects of NRP2 deficiency on airway inflammation. METHODS/STUDY POPULATION: NRP2 expression by lung immune cells from NRP2 reporter mice was determined by flow cytometry. NRP2 expression by human alveolar macrophages (AM) from healthy individuals was determined by mRNA analysis and flow cytometry. Airway inflammation in NRP2-deficient mice was assessed by bronchoalveolar lavage (BAL) cytology and inflammatory gene expression in lung tissue. RESULTS/ANTICIPATED RESULTS: NRP2 expression in lung immune cells was negligible under steady-state conditions. In contrast, inhalational exposure to lipopolysaccharide (LPS) adjuvant dramatically induced NRP2 expression in AM, as 63.3% of AM from LPS-treated mice were NRP2+ compared with 1.5% of AM from control mice. Ex vivo treatment of human AM with LPS resulted in a 1.5-fold and 2.6-fold increase in NRP2 mRNA and surface protein expression, respectively. Compared to littermate controls, NRP2-deficient mice had greater numbers of BAL leukocytes and increased lung expression of the T helper type 2 cytokines IL-4 and IL-5. Furthermore, NRP2 deficiency resulted in stochastic development of allergic airway inflammation, as spontaneous airway eosinophilia was detected in 25% (2/8) of NRP2-deficient mice compared with 0% (0/8) of littermate controls. DISCUSSION/SIGNIFICANCE OF IMPACT: NRP2 is expressed by activated human and murine AM and suppresses the spontaneous development of allergic airway inflammation. These findings suggest that NRP2 may play a key role in allergic asthma pathogenesis, and could prove to be an important therapeutic target in patients with asthma and other allergic diseases.


2019 ◽  
Vol 68 ◽  
pp. 124-130 ◽  
Author(s):  
Na-Rae Shin ◽  
Hyung-Jun Kwon ◽  
Je-Won Ko ◽  
Joong-Sun Kim ◽  
In-Chul Lee ◽  
...  

2016 ◽  
Vol 306 ◽  
pp. 17-26 ◽  
Author(s):  
Vaibhav Shrirang Dhawale ◽  
Venkateswara Rao Amara ◽  
Pinakin Arun Karpe ◽  
Vajir Malek ◽  
Deep Patel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document