scholarly journals Electrospun Nanofiber and Cryogel of Polyvinyl Alcohol Transdermal Patch Containing Diclofenac Sodium: Preparation, Characterization and In Vitro Release Studies

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1900
Author(s):  
Shafizah Sa’adon ◽  
Mohamed Nainar Mohamed Ansari ◽  
Saiful Izwan Abd Razak ◽  
Abdul Halim Mohd Yusof ◽  
Ahmad Athif Mohd Faudzi ◽  
...  

Transdermal drug delivery systems (TDDS) have drawn more interest from pharmaceutical scientists because they could provide steady blood levels and prevent the first-pass metabolism over a longer period. Polyvinyl alcohol (PVA) has been widely used in this application due to its biocompatibility, non-toxicity, nanofiber and hydrogel-forming ability. Despite those benefits, their morphology would easily be destroyed by continuous water absorption and contribute to burst drug release due to its hydrophilicity. The aim of this study was to prepare the diclofenac sodium (DS)-medicated dual layer PVA patch using a combination of electrospinning and cryogelation (freeze–thaw) methods to improve the physicochemical properties and drug compatibility and investigate the release of the DS-medicated dual layer PVA patch. Morphological observations using scanning electron microscopy (SEM) verified the polymer−polymer interaction between both layers, whereas Fourier transform infrared (FTIR) spectroscopy has demonstrated the compatibility of DS in PVA matrix up to 2% w/v of PVA volume. The DS loads were found amorphously distributed efficaciously in PVA matrix as no visible spectra of DS–PVA interaction were detected. The DS-medicated dual layer PVA patch with a thicker nanofiber layer (3-milliliter running volume), three freeze–thaw cycles and 2% DS loading labeled as 2%DLB3C show the lowest swelling capacity (18.47%). The in vitro assessment using Franz diffusion cells showed that the 2%DLB3C indicates a better sustained release of DS, with 53.26% of the DS being released after 12 h. The 2%DLB3C owned a flux (Jss) of 0.256 mg/cm2/h and a permeability coefficient (Kp) value of 0.020 cm/h. Thus, the results demonstrate that DS-medicated dual layer PVA patches prepared via a combination of electrospinning and cryogelation are capable of releasing drugs for up to 24 h and can serve as a drug reservoir in the skin, thereby extending the pharmacologic effects of DS.

Author(s):  
Mohammed Ibrahim ◽  
Alaa Zaky ◽  
Mohsen Afouna ◽  
Ahmed Samy

Carrier erythrocytes are emerging as one of the most promising biological drug delivery systems investigated in recent decades. Beside its biocompatibility, biodegradability and ability to circulate throughout the body, it has the ability to perform extended release system of the drug for a long period. The ultimate goal of this study is to introduce a new carrier system for Salbutamol, maintaining suitable blood levels for a long time, as atrial to resolve the problems of nocturnal asthma medication Therefore in this work we study the effect of time, temperature as well as concentration on the loading of salbutamol in human erythrocytes to be used as systemic sustained release delivery system for this drug. After the loading process is performed the carrier erythrocytes were physically and cellulary characterized. Also, the in vitro release of salbutamol from carrier erythrocytes was studied over time interval. From the results it was found that, human erythrocytes have been successfully loaded with salbutamol using endocytosis method either at 25 Co or at 37 Co . The highest loaded amount was 3.5 mg/ml and 6.5 mg/ml respectively. Moreover, the percent of cells recovery is 90.7± 1.64%. Hematological parameters and osmotic fragility behavior of salbutamol loaded erythrocytes were similar that of native erythrocytes. Scanning electron microscopy demonstrated that the salbutamol loaded cells has moderate change in the morphology. Salbutamol releasing from carrier cell was 43% after 36 hours in phosphate buffer saline. The releasing pattern of the drug from loaded erythrocytes showed initial burst release in the first hour followed by a very slow release, obeying zero order kinetics. It concluded that salbutamol is successfully entrapped into erythrocytes with acceptable loading parameters and moderate morphological changes, this suggesting that erythrocytes can be used as prolonged release carrier for salbutamol.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2464
Author(s):  
Sotiria Demisli ◽  
Evgenia Mitsou ◽  
Vasiliki Pletsa ◽  
Aristotelis Xenakis ◽  
Vassiliki Papadimitriou

Biocompatible nanoemulsions and nanoemulsion-based hydrogels were formulated for the encapsulation and delivery of vitamin D3 and curcumin. The aforementioned systems were structurally studied applying dynamic light scattering (DLS), electron paramagnetic resonance (EPR) spectroscopy and viscometry. In vitro studies were conducted using Franz diffusion cells to investigate the release of the bioactive compounds from the nanocarriers. The cytotoxicity of the nanoemulsions was investigated using the thiazolyl blue tetrazolium bromide (MTT) cell proliferation assay and RPMI 2650 nasal epithelial cells as in vitro model. DLS measurements showed that vitamin D3 and curcumin addition in the dispersed phase of the nanoemulsions caused an increase in the size of the oil droplets from 78.6 ± 0.2 nm to 83.6 ± 0.3 nm and from 78.6 ± 0.2 nm to 165.6 ± 1.0 nm, respectively. Loaded nanoemulsions, in both cases, were stable for 60 days of storage at 25 °C. EPR spectroscopy revealed participation of vitamin D3 and curcumin in the surfactants monolayer. In vitro release rates of both lipophilic compounds from the nanoemulsions were comparable to the corresponding ones from the nanoemulsion-based hydrogels. The developed o/w nanoemulsions did not exhibit cytotoxic effect up to the concentration threshold of 1 mg/mL in the cell culture medium.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Houman Savoji ◽  
Amir Mehdizadeh ◽  
Ahmad Ramazani Saadat Abadi

Nitroglycerin (TNG) transdermal drug delivery systems (TDDSs) with different acrylic pressure-sensitive adhesives (PSAs) and chemical permeation enhancers (CPEs) were prepared. The effects of PSAs and CPEs types and concentrations on skin permeation and in vitro drug release from devices were evaluated using the dissolution method as well as the modified-jacketed Franz diffusion cells fitted with excised rat abdominal skin. It was demonstrated that the permeation rate or steady state flux (Jss) of the drug through the excised rat skin was dependent on the viscosity and type of acrylic PSA as well as the type of CPE. Among different acrylic PSAs, Duro-Tak 2516 and Duro-Tak 2054 showed the highest and Duro-Tak 2051 showed the lowest Jss. Among the various CPEs, propylene glycol and cetyl alcohol showed the highest and the lowest enhancement of the skin permeation of TNG, respectively. The adhesion properties of devices such as 180° peel strength and probe tack values were obtained. It was shown that increasing the concentration of CPE led to reduction in the adhesion property of PSA. Moreover, after optimization of the formulation, it was found that the use of 10% PG as a CPE and 25% nitroglycerin loading in Duro-Tak 2054 is an effective monolithic DIAP for the development of a transdermal therapeutic system for nitroglycerin.


2017 ◽  
Vol 155 ◽  
pp. 182-191 ◽  
Author(s):  
Fabián Martínez-Gómez ◽  
Juan Guerrero ◽  
Betty Matsuhiro ◽  
Jorge Pavez

2015 ◽  
Vol 11 (4) ◽  
pp. 3453-3462
Author(s):  
Paolo Yammine ◽  
Therese Maarawi ◽  
Dima Moussa ◽  
Roula Abdel-Massih ◽  
Rima Kassab ◽  
...  

Microencapsulation by the solvent evaporation technique was used to formulate Indomethacin-loaded poly(DL-lactide-co-caprolactone) microspheres with three different surfactants: Tween 80, Span 80, and Polyvinyl alcohol. Different formulations were prepared by changing drug masses, while keeping the quantities of the polymer and of the surfactant constant. The prepared microspheres were evaluated for drug content, particle size, morphology, drug-polymer interaction, stability, in vitro release, and cytotoxicity assays. Comparison was done to study the effects of the surfactant type on their characteristics. Microspheres presented a spherical and porous profile and were characterized by the stable character of the encapsulated drug. The usage of the Polyvinyl alcohol revealed the highest percent drug entrapment and drug loading, the biggest particles sizes, and the lowest drug release rate. It was the opposite in the case of Tween 80. A negligible cytotoxic effect was noted on Polyvinyl alcohol formulations having the highest drug content. Polymeric microspheres were used efficiently as a delivery system for Indomethacin. Changing the surfactant type had many advantages on drug encapsulation and release rate.


Sign in / Sign up

Export Citation Format

Share Document