scholarly journals Squeezed Coherent States in Double Optical Resonance

Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 72
Author(s):  
George Mouloudakis ◽  
Peter Lambropoulos

In this work, we consider a “Λ-type” three-level system where the first transition is driven by a radiation field initially prepared in a squeezed coherent state, while the second one by a weak probe field. If the squeezed field is sufficiently strong to cause Stark splitting of the states it connects, such a splitting can be monitored through the population of the probe state, a scheme also known as “double optical resonance”. Our results deviate from the well-studied case of coherent driving indicating that the splitting profile shows great sensitivity to the value of the squeezing parameter, as well as its phase difference from the complex displacement parameter. The theory is cast in terms of the resolvent operator where both the atom and the radiation field are treated quantum mechanically, while the effects of squeezing are obtained by appropriate averaging over the photon number distribution of the squeezed coherent state.

2020 ◽  
Vol 34 (33) ◽  
pp. 2050377
Author(s):  
Yan-Bei Cheng ◽  
Sheng-Guo Guan ◽  
Zu-Jian Wang ◽  
Xue-Xiang Xu

Two “amplified” quantum states, that is, amplified coherent state (ACS) and amplified squeezed vacuum (ASV), are considered in this paper by applying operator [Formula: see text] on coherent state (CS) and squeezed vacuum (SV), respectively. Here [Formula: see text] [Formula: see text] denotes a amplification factor and [Formula: see text]) denote the creation (annihilation) operator. Along these two lines, we make a comparative analysis of properties for ACS and ASV. The considered properties include density matrix elements, Wigner function, mean photon number, second-order autocorrelation function, and quadrature squeezing. We derive analytical expressions and make numerical simulations for all the properties. The noteworthy results include: (1) the ACS has antibunching and squeezing characters; (2) the ASV will have the bunching and antibunching effect in small initial squeezing.


2000 ◽  
Vol 14 (30) ◽  
pp. 1099-1108 ◽  
Author(s):  
HONGCHEN FU ◽  
XIAOGUANG WANG ◽  
CHONG LI ◽  
JIANGONG WANG

We study su(2) and su(1,1) displaced number states. These states are eigenstates of density-dependent interaction systems of quantized radiation field with classical current. These states are intermediate states interpolating between number and displaced number states. Their photon number distribution, statistical and squeezing properties are studied in detail. It shows that these states exhibit strong nonclassical properties.


1997 ◽  
Vol 11 (09n10) ◽  
pp. 399-406
Author(s):  
Norton G. de Almeida ◽  
Célia M. A. Dantas

The norder expressions for the squeezed and coherent states are derived as a natural generalization of the usual squeezed coherent and coherent states. The photon number distribution of n order of squeezed coherent states that are eigenstates of the operators [Formula: see text] is derived. The n order coherent state is a particular case of the states that we are now deriving. Some mathematical and quantum statistical properties of these states are discussed.


Sign in / Sign up

Export Citation Format

Share Document