Comparative analysis of properties for amplified coherent state and amplified squeezed vacuum

2020 ◽  
Vol 34 (33) ◽  
pp. 2050377
Author(s):  
Yan-Bei Cheng ◽  
Sheng-Guo Guan ◽  
Zu-Jian Wang ◽  
Xue-Xiang Xu

Two “amplified” quantum states, that is, amplified coherent state (ACS) and amplified squeezed vacuum (ASV), are considered in this paper by applying operator [Formula: see text] on coherent state (CS) and squeezed vacuum (SV), respectively. Here [Formula: see text] [Formula: see text] denotes a amplification factor and [Formula: see text]) denote the creation (annihilation) operator. Along these two lines, we make a comparative analysis of properties for ACS and ASV. The considered properties include density matrix elements, Wigner function, mean photon number, second-order autocorrelation function, and quadrature squeezing. We derive analytical expressions and make numerical simulations for all the properties. The noteworthy results include: (1) the ACS has antibunching and squeezing characters; (2) the ASV will have the bunching and antibunching effect in small initial squeezing.

2020 ◽  
pp. 2150028
Author(s):  
Qiang Ke ◽  
Yi-Fan Wang ◽  
Yan-Bei Cheng ◽  
Xue-Xiang Xu

Based on the squeezed vacuum (SV) and the quadratic function of the photon number operator, we introduce the quadratically amplified squeezed vacuum (QASV) in this paper. We study the intensity, noise, squeezing effect, antibunching effect, and Wigner function of the QASVs. Compared with the SV, the QASVs have distinctive signal characters and possess peculiar non-classical properties in the proper range of interaction parameters.


2021 ◽  
pp. 2150448
Author(s):  
Zheng-Yin Zhao ◽  
Xue-Xiang Xu

In this paper, we introduce the amplified thermal state (ATS) by operating [Formula: see text] on the thermal state (TS). Here, [Formula: see text] is the amplification factor and [Formula: see text] is the photon number operator. We study its properties, such as light intensity, signal-to-noise ratio (SNR), Fock matrix elements and Wigner function. In addition, we study its decoherence in photon-loss channel by analyzing evolution of all above properties. All considered properties are derived analytically and simulated numerically. Compared with the original TS, the amplification can enhance light intensity and SNR, remain the mixed character, and exhibit non-Gaussianity. While the decoherence will weaken light intensity and SNR, remain the mixed character, and return to Gaussian state.


2020 ◽  
Vol 98 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Hong-Chun Yuan ◽  
Xue-Xiang Xu ◽  
Heng-Mei Li ◽  
Ye-Jun Xu ◽  
Xiang-Guo Meng

We theoretically generate a kind of photon-catalyzed optical coherent states (PCOCSs) by heralded interference between any photons and coherent state via a non-degenerate parametric amplifier, which is also just a Laguerre polynomial excited coherent state. Based on obtaining the probability of successfully detecting them (also the normalization factor), the nonclassical properties of the PCOCSs are analytically investigated according to autocorrelation function, quadrature squeezing, and the negativity of the Wigner function. It is found that the nonclassicality depends on the amplitude of the coherent state, the catalysis photon number, and amplifier parameter. The negative volume of their Wigner function can be enlarged by increasing the catalysis photon number. These parameters may be effectively used to improve and enhance the nonclassical characteristics.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050167 ◽  
Author(s):  
H. Fakhri ◽  
M. Sayyah-Fard

Noncommutative optical squeezed vacuum states are constructed as eigenstates of an appropriate two-photon annihilation operator corresponding to the Biedenharn–Macfarlane [Formula: see text]-oscillator. We consider in details the role of noncommutativity parameter [Formula: see text] on the nonclassical behaviors including quadrature squeezing and sub-Poissonian statistics. Also, we construct the noncommutative photon-added squeezed vacuum states and consider their Hillery-type higher-order squeezing and single-mode noise band.


Author(s):  
Mariusz Pawlak ◽  
Marcin Stachowiak

AbstractWe present general analytical expressions for the matrix elements of the atom–diatom interaction potential, expanded in terms of Legendre polynomials, in a basis set of products of two spherical harmonics, especially significant to the recently developed adiabatic variational theory for cold molecular collision experiments [J. Chem. Phys. 143, 074114 (2015); J. Phys. Chem. A 121, 2194 (2017)]. We used two approaches in our studies. The first involves the evaluation of the integral containing trigonometric functions with arbitrary powers. The second approach is based on the theorem of addition of spherical harmonics.


2018 ◽  
Vol 176 (4) ◽  
pp. 1433-1443
Author(s):  
Tran Thanh Tuan ◽  
Pham Chi Vinh ◽  
Abdelkrim Aoudia ◽  
Truong Thi Thuy Dung ◽  
Daniel Manu-Marfo

2021 ◽  
Vol 2103 (1) ◽  
pp. 012158
Author(s):  
N V Larionov

Abstract The model of a single-emitter laser generating in the regime of small number of photons in the cavity mode is theoretically investigated. Based on a system of equations for different moments of the field operators the analytical expressions for mean photon number and photon number variance are obtained. Using the master equation approach the differential equation for the phase-averaged quasi-probability Q is derived. For some limiting cases the exact solutions of this equation are found.


1997 ◽  
Vol 46 (9) ◽  
pp. 1718
Author(s):  
FENG XUN-LI ◽  
HE LIN-SHENG ◽  
LIU YONG-LIANG

Author(s):  
Getahun Alemayehu ◽  
Dagnew Habtamu

In this work the statistical and squeezing properties of light-driven by sub-harmonic generation with two-mode coherent light are studied. With interaction Hamiltonian of both two-mode coherent and sub harmonic generation, we have driven master equation of system under consideration. From the master equation, the solution of the C-number Langevin equation is derived. It helps us to solve quadrature variance, quadrature squeezing, mean, and variance of photon number for light produced by sub-harmonic generation with the two-mode coherent light state. And the result shows that; the squeezing occurs in plus quadrature with the maximum squeezing of 87%. The photon statistics of the system under consideration is subpoissonian in which both mean & variance are increasing as kappa increase.


Sign in / Sign up

Export Citation Format

Share Document