scholarly journals Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres

Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 73
Author(s):  
Rayenne Boudoukha ◽  
Stephane Perrin ◽  
Assia Demagh ◽  
Paul Montgomery ◽  
Nacer-Eddine Demagh ◽  
...  

Through rigorous electromagnetic simulations, the natural coupling of high-spatial-frequency evanescent waves from the near field to the far field by dielectric microspheres is studied in air. The generation of whispering gallery modes inside the microspheres is shown independently of any resonance. In addition, the conversion mechanism of these evanescent waves into propagating waves is analysed. This latter point leads to key information that allows a better physical understanding of the super-resolution phenomenon in microsphere-assisted microscopy where sub-diffraction-limit revolving power is achieved.

2021 ◽  
Author(s):  
Pradeep Kumar ◽  
Mohamed Subair Syed Akbar Ali ◽  
Prabhu Rajagopal

Abstract Ultrasonic imaging is widely preferred in the field of non-destructive evaluation, medical diagnostics, and underwater inspection because it offers various advantages such as safety and versatility. However, conventional ultrasonic imaging methods suffer from the poor resolution limit imposed by the loss of information on fine features within the near-field. Metamaterial concepts have attracted much research interest in recent years, yielding extraordinary benefits such as super-resolution imaging, vibration damping, and cloaking. In the context of imaging, Metalenses allow the successful transfer of the information carried by the evanescent waves to far-field by amplifying them and hence help in overcoming the resolution limit. Hyperlenses enable subwavelength resolution along with spatial magnification by transforming evanescent waves scattered past a material artifact into propagating waves at the far-field ‘imaging’ end of the medium. This paper discusses novel radially symmetric ultrasonic hyperlens for imaging defects in the context of non-destructive evaluation, a topic that has not been studied much. The effect of parameters such as defect extent and distance between the lens on the subwavelength imaging of the hyperlens is studied using numerical simulations. This study investigates the magnification achievable using the proposed hyperlens and the effectiveness of this approach for nondestructive evaluation using cost-effective ‘everyday’ transducers.


2015 ◽  
Vol 23 (22) ◽  
pp. 28896 ◽  
Author(s):  
Nicolas Riesen ◽  
Tess Reynolds ◽  
Alexandre François ◽  
Matthew R. Henderson ◽  
Tanya M. Monro

2021 ◽  
Author(s):  
◽  
Farzaneh Fadakar Masouleh

<p>Conventional optics suffer from a fundamental resolution limit due to the nature of light. The near-field superlens concept was introduced two decades ago, and its theory for enabling high resolution imaging is well-established now. Initially, this superlens, which has a simple setup, became a hot topic given the proposition of overcoming the diffraction limit. It has been demonstrated that a near-field superlens can reconstruct images using evanescent waves emanating from small objects by means of resonant excitations on the surface of the superlens. A modified version of the superlens named the far-field superlens is theorized to be able to project the near-field subwavelength information to the far-field region. By design, the far-field superlens is a near-field superlens with nanostructures added on top of it. These nanostructures, referred to as diffraction gratings help couple object information available in the evanescent waves to the far-field. Work reported in this thesis is divided to two major sections. The first describes the modelling technique that investigates the performance of a far-field superlens. This section focuses on evaluating the impact of the diffraction gratings geometry and the object size on the far-field superlens performance as well as the resulting far-field pattern. It was shown that a far-field superlens with a nanograting having a duty cycle of 40% to 50% produces the maximum intensity and contrast in the far-field interactions. For periodic rectangular objects, an inverse-trapezoidal nanograting was shown to provide the best contrast and intensity for far-field interactions. The minimal simulation domain to model a symmetric far-field superlens design was determined both in 2D and 3D. This input reduced the required modelling time and resources. Finally, a 3D far-field superlens model was proposed, and the effect of light polarization on the far-field pattern was studied. The second section of this thesis contains the experimental study that explores a new material as a potential candidate for the construction of far-field superlens. The material conventionally used for superlens design is silver, as its plasmonic properties are well-established. However, scaling down silver features to the nanoscale introduces fundamental fabrication challenges. Furthermore, silver oxidizes due to its reactions with sulphur compounds at ambient conditions, which means that operating a silver far-field superlens is only possible in a well-controlled environment. This disagrees with our proposed concept of a low-cost and robust superlens imaging device. On the other hand, highly doped semiconductors are emerging candidates for plasmonic applications due to the possibility of tuning their optical and electrical properties during the fabrication process. While the working principle of a superlens is independent of the plasmonic material of choice, every plasmonic material has a particular range of operating wavelengths. The pros and cons of each plasmonic material are usually identified once used experimentally. In this work, aluminium-doped zinc oxide was the proposed material of choice for the far-field superlens design. The second part of this thesis details the characterization results of the optical, electrical and structural properties of this proposed alternative. Our aluminium-doped zinc oxide samples were highly transparent for large parts of the spectrum. Their carrier concentration was of the order of 10+20 cm-3, and a resistivity of about 10-3 Ω.cm was achieved. The modelled dielectric permittivity for the studied samples showed a cross-over frequency in the near-infrared region, with the highest plasma frequency achieved in this study being 4710 cm-1.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sushanth Reddy Amanaganti ◽  
Miha Ravnik ◽  
Jayasri Dontabhaktuni

Abstract Sub-wavelength periodic nanostructures give rise to interesting optical phenomena like effective refractive index, perfect absorption, cloaking, etc. However, such structures are usually metallic which results in high dissipative losses and limitations for use; therefore, dielectric nanostructures are increasingly considered as a strong alternative to plasmonic (metallic) materials. In this work, we show light-matter interaction in a high refractive index dielectric metasurface consisting of an array of cubic dielectric nano-structures made of very high refractive index material, Te in air, using computer modelling. We observe a distinct band-like structure in both transmission and reflection spectra resulting from the near-field coupling of the field modes from neighboring dielectric structures followed by a sharp peak in the transmission at higher frequencies. From the spatial distribution of the electric and magnetic fields and a detailed multipole analysis in both spherical harmonics and Cartesian components, the dominant resonant modes are identified to be electric and magnetic dipoles. Specifically at lower frequency (60 THz) a novel anapole-like state characterized by strong-suppression in reflection and absorption is observed, reported very recently as ‘lattice-invisibility’ state. Differently, at higher frequency (62 THz), strong absorption and near-zero far field scattering are observed, which combined with the field profiles and the multipole analysis of the near-fields indicate the excitation of an anapole. Notably the observed novel modes occur in the simple geometry of dielectric cubes and are a result of collective response of the metasurfaces. Periodicity of the cubic metasurface is shown as the significant material tuning parameter, allowing for the near-field and far-field coupling effects of anapole metasurface. More generally, our work is a contribution towards developing far-fetching applications based on metamaterials such as integrated devices and waveguides consisting of non-radiating modes.


Nano Letters ◽  
2011 ◽  
Vol 11 (10) ◽  
pp. 4421-4424 ◽  
Author(s):  
Richard Taubert ◽  
Ralf Ameling ◽  
Thomas Weiss ◽  
André Christ ◽  
Harald Giessen

2013 ◽  
Vol 102 (1) ◽  
pp. 013104 ◽  
Author(s):  
Xiang Hao ◽  
Xu Liu ◽  
Cuifang Kuang ◽  
Yanghui Li ◽  
Yulong Ku ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document