scholarly journals Experimental Study on 25 Gbps C-Band PON over up to 25 km SMF Using a 10G-Class DML + APD IM-DD System

Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 328
Author(s):  
Haoyi Wang ◽  
Pablo Torres-Ferrera ◽  
Valter Ferrero ◽  
Roberto Gaudino

In this paper we present an experimental analysis of several modulation formats (pulse amplitude modulation (PAM-2), quaternary pulse amplitude modulation (PAM-4) and electrical duobinary (EDB)) for passive optical network (PON) applications at 25 Gbps bit rate in a C-band 10G-class directly modulated lasers (DML) and avalanche photodiode (APD) intensity modulation and direct detection (IM-DD) system over a single mode fiber (SMF) of up to 25 km, optimizing DML operations and demonstrating that PAM-2 is a promising choice. We also theoretically and experimentally analyzed the channel frequency response of DML and SMF affected by DML chirp and SMF chromatic dispersion.

Author(s):  
L. Jerart Julus ◽  
D. Manimegalai ◽  
S. Sibi Chakkaravarthy

This paper presents a Filter Bank Multicarrier (FBMC), a viable waveform candidate for fifth generation (5G) communications using Staggered-Modulated Multitone (SMT). FBMC is preferred in optical communication because of its ability to work without Cyclic Prefix (CP). In any case, the operation of FBMC in optical access systems with Artificial Neural Networks (ANNs) has not been broadly explored either downstream or upstream. This work presents an advanced Nonlinear Feed-Forward Equalizer (NFFE) that makes use of multilayer ANN for dispersion compensation. ANN is trained to act as a filter with an extensive equalizer training which has the ability to mitigate dispersion and increase the performance of the system. The simulation work is used to study the performance of intensity modulated FBMC system with direct detection in Long Reach-Passive Optical Networks (LR-PONs).The transmission data rate is varied between 8 and 10[Formula: see text]Gbps with the optical fiber length from 30 to 90[Formula: see text]km of Standard Single Mode Fiber (SSMF). The obtained result suggests that FBMC system with ANN-NFFE equalizer fundamentally builds the resilience to the Chromatic Dispersion (CD) distortion, and a CP-less transmission is possible upto 90[Formula: see text]km.


2019 ◽  
Vol 9 (4) ◽  
pp. 748 ◽  
Author(s):  
Xiang Gao ◽  
Yuancheng Cai ◽  
Bo Xu ◽  
Xiaoling Zhang ◽  
Kun Qiu

As the demand for high data volumes keeps increasing in optical access networks, transmission capacities and distance are becoming bottlenecks for passive optical networks (PONs). To solve this problem, a novel scheme based on multi-twin single sideband (SSB) modulation with direct detection is proposed and investigated in this paper. At the central office, two SSB signals are generated simultaneously with the same digital-to-analog converters (DACs). The twin-SSB signal is not only robust against frequency selected power fading introduced by chromatic dispersion (CD), but also improves the spectral efficiency (SE). By combining a twin-SSB technique with multi-band carrier-less amplitude/phase modulation (multi-CAP), different optical network units (ONUs) can be supported by flexible multi-band allocation based on software-reconfigurable optical transceivers. The Kramers–Kronig (KK) scheme is adopted on the ONU side to effectively mitigate the signal–signal beat interference (SSBI) induced by the square-law detection. The proposed system is extensively studied and validated with four sub-bands using 50 Gbps 16 quadrature amplitude modulation (QAM) modulation for each sub-band using numerical simulations. Digital pre-equalization is introduced at the transmitter-side to balance the performance of different ONUs. After system optimization, a bit error rate (BER) threshold for hard decision forward error correction (HD-FEC) code with 7% redundancy ratio (BER = 3.8 × 10−3) can be reached for all ONUs over 50-km standard single-mode fiber.


2021 ◽  
Vol 11 (9) ◽  
pp. 4284
Author(s):  
Oskars Ozolins ◽  
Xiaodan Pang ◽  
Aleksejs Udalcovs ◽  
Richard Schatz ◽  
Sandis Spolitis ◽  
...  

We experimentally evaluate the high-speed on–off keying (OOK) and four-level pulse amplitude modulation (PAM4) transmitter’s performance in C-band for short-reach optical interconnects. We demonstrate up to 100 Gbaud OOK and PAM4 transmission over a 400 m standard single-mode fiber with a monolithically integrated externally modulated laser (EML) having 100 GHz 3 dB bandwidth with 2 dB ripple. We evaluate its capabilities to enable 800 GbE client-side links based on eight, and even four, optical lanes for optical interconnect applications. We study the equalizer’s complexity when increasing the baud rate of PAM4 signals. Furthermore, we extend our work with numerical simulations showing the required received optical power (ROP) for a certain bit error rate (BER) for the different combinations of the effective number of bits (ENOB) and extinction ratio (ER) at the transmitter. We also show a possibility to achieve around 1 km dispersion uncompensated transmission with a simple decision feedback equalizer (DFE) for a 100 Gbaud OOK, PAM4, and eight-level PAM (PAM8) link having the received power penalty of around 1 dB.


Photonics ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 49
Author(s):  
Lorenzo Combi ◽  
Alberto Gatto ◽  
Pierpaolo Boffi ◽  
Umberto Spagnolini ◽  
Paola Parolari

The evolution of radio access networks is towards a centralized architecture (C-RAN), with massive antenna deployments and large radio-frequency bandwidths. In the next future, traditional optical transport technologies based on digital radio over fiber will no longer be able to support the mobile fronthaul traffic connecting antennas hosted at remote radio units and centralized baseband units. Analog radio over fiber can be selected to support the mobile fronthaul (MFH) network and, in particular, pulse width modulation (PWM) is a viable alternative for analog signal transport. In order to increase the MFH spectral efficiency, we propose to exploit multilevel PWM (M-PWM) in a wavelength division multiplexing-passive optical network (WDM-PON) network, comparing its performance with a conventional 2-level PWM solution. Experimental results show successful transmission over 7.5-km standard single mode fiber (SSMF) of up to 16 aggregated LTE-like 20-MHz signals with 64-QAM on each subcarrier, while up to eight aggregated LTE-like 20-MHz signals with 256-QAM could be supported. M-PWM thus allows either using higher order modulation formats or aggregating a higher number of LTE channels.


2014 ◽  
Vol 631-632 ◽  
pp. 860-863 ◽  
Author(s):  
Xiao Xue Gong ◽  
Hui Li ◽  
Peng Chao Han ◽  
Yu Fang Zhou

Orthogonal Frequency Division Multiplexing (OFDM) has gained great attention in the next generation Long-Reach Passive Optical Network (LR-PON) due to its high spectrum efficiency, flexible resource allocation and natural compatibility with Digital Signal Processing (DSP)-based implementation. In this paper, we propose and demonstrate a 40Gbit/s direct-detection long reach OFDM-PON system for downstream transmission over 100km standard signal mode fiber (SSMF). By using a simple Least Square (LS) method for the channel estimation, our proposed system achieves high bit rate without the need for chromatic dispersion compensation.


2015 ◽  
Vol 15 (10) ◽  
pp. 7462-7466
Author(s):  
Su Hwan Oh ◽  
Ki-Hong Yoon ◽  
Seung-Hyun Cho ◽  
Jun-Kyu Seo

We report the transmission capability of a tunable external cavity laser (T-ECL) that utilizes a super-luminescent diode (SLD) and a polymer Bragg reflector (PBR) operating with a direct modulation of 2.5 Gb/s for a light source of a long-reach wavelength division multiplexed-passive optical network (WDM-PON). The T-ECL successfully operated at an ambient temperature of −20 °C to 70 °C when employing a cooled SLD. A tuning range of 12-nm is achieved with a tuning power of lower than 80 mW. A side mode suppression ratio of more than 35 dB was obtained for the whole tuning range. The linewidth of the lasing spectrum is less than 0.1 nm at 20 dB from the peak power. The transmission performance of the T-ECL, including an optical bandpass filter (OBPF), is better than that of the T-ECL excluding an OBPF for a long-reach transmission over 80 km of single mode fiber (SMF). The power penalty of the T-ECL is less than 1.4 dB when using an OBPF for an 80-km transmission.


Sign in / Sign up

Export Citation Format

Share Document