FBMC-based dispersion compensation using artificial neural network equalization for long reach-passive optical network

Author(s):  
L. Jerart Julus ◽  
D. Manimegalai ◽  
S. Sibi Chakkaravarthy

This paper presents a Filter Bank Multicarrier (FBMC), a viable waveform candidate for fifth generation (5G) communications using Staggered-Modulated Multitone (SMT). FBMC is preferred in optical communication because of its ability to work without Cyclic Prefix (CP). In any case, the operation of FBMC in optical access systems with Artificial Neural Networks (ANNs) has not been broadly explored either downstream or upstream. This work presents an advanced Nonlinear Feed-Forward Equalizer (NFFE) that makes use of multilayer ANN for dispersion compensation. ANN is trained to act as a filter with an extensive equalizer training which has the ability to mitigate dispersion and increase the performance of the system. The simulation work is used to study the performance of intensity modulated FBMC system with direct detection in Long Reach-Passive Optical Networks (LR-PONs).The transmission data rate is varied between 8 and 10[Formula: see text]Gbps with the optical fiber length from 30 to 90[Formula: see text]km of Standard Single Mode Fiber (SSMF). The obtained result suggests that FBMC system with ANN-NFFE equalizer fundamentally builds the resilience to the Chromatic Dispersion (CD) distortion, and a CP-less transmission is possible upto 90[Formula: see text]km.

2019 ◽  
Vol 9 (4) ◽  
pp. 748 ◽  
Author(s):  
Xiang Gao ◽  
Yuancheng Cai ◽  
Bo Xu ◽  
Xiaoling Zhang ◽  
Kun Qiu

As the demand for high data volumes keeps increasing in optical access networks, transmission capacities and distance are becoming bottlenecks for passive optical networks (PONs). To solve this problem, a novel scheme based on multi-twin single sideband (SSB) modulation with direct detection is proposed and investigated in this paper. At the central office, two SSB signals are generated simultaneously with the same digital-to-analog converters (DACs). The twin-SSB signal is not only robust against frequency selected power fading introduced by chromatic dispersion (CD), but also improves the spectral efficiency (SE). By combining a twin-SSB technique with multi-band carrier-less amplitude/phase modulation (multi-CAP), different optical network units (ONUs) can be supported by flexible multi-band allocation based on software-reconfigurable optical transceivers. The Kramers–Kronig (KK) scheme is adopted on the ONU side to effectively mitigate the signal–signal beat interference (SSBI) induced by the square-law detection. The proposed system is extensively studied and validated with four sub-bands using 50 Gbps 16 quadrature amplitude modulation (QAM) modulation for each sub-band using numerical simulations. Digital pre-equalization is introduced at the transmitter-side to balance the performance of different ONUs. After system optimization, a bit error rate (BER) threshold for hard decision forward error correction (HD-FEC) code with 7% redundancy ratio (BER = 3.8 × 10−3) can be reached for all ONUs over 50-km standard single-mode fiber.


Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 328
Author(s):  
Haoyi Wang ◽  
Pablo Torres-Ferrera ◽  
Valter Ferrero ◽  
Roberto Gaudino

In this paper we present an experimental analysis of several modulation formats (pulse amplitude modulation (PAM-2), quaternary pulse amplitude modulation (PAM-4) and electrical duobinary (EDB)) for passive optical network (PON) applications at 25 Gbps bit rate in a C-band 10G-class directly modulated lasers (DML) and avalanche photodiode (APD) intensity modulation and direct detection (IM-DD) system over a single mode fiber (SMF) of up to 25 km, optimizing DML operations and demonstrating that PAM-2 is a promising choice. We also theoretically and experimentally analyzed the channel frequency response of DML and SMF affected by DML chirp and SMF chromatic dispersion.


2014 ◽  
Vol 631-632 ◽  
pp. 860-863 ◽  
Author(s):  
Xiao Xue Gong ◽  
Hui Li ◽  
Peng Chao Han ◽  
Yu Fang Zhou

Orthogonal Frequency Division Multiplexing (OFDM) has gained great attention in the next generation Long-Reach Passive Optical Network (LR-PON) due to its high spectrum efficiency, flexible resource allocation and natural compatibility with Digital Signal Processing (DSP)-based implementation. In this paper, we propose and demonstrate a 40Gbit/s direct-detection long reach OFDM-PON system for downstream transmission over 100km standard signal mode fiber (SSMF). By using a simple Least Square (LS) method for the channel estimation, our proposed system achieves high bit rate without the need for chromatic dispersion compensation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Navjot Singh ◽  
Bharat Naresh Bansal

Abstract Wavelength division multiplexed passive optical is promising technique to achieve a high data rate and large number of user. The notable advantages of WDM PON is the combination of reliability, cheap in cost, accessible bandwidth, high security, large optical reach and it can support large number of ONU. There are multiple approaches to achieve high-speed WDN PON using different transmission techniques. In WDM, multiple lasers are required which increase the cost of the system. To reduce cost, an optical multicarrier generation system is proposed. An economical multiple carrier generation with the incorporation of sine generator and Mach–Zehndar modulator is demonstrated. Utmost work of sine generator and dual drive modulator was to attain low cost functioning of passive optical networks. Multicarrier generation was done and replacement of laser carriers with optical multicarrier generator. Carriers were generated with the frequency spacing of 20 GHz and these carriers were used in the passive optical networks with the tone-to-noise ratio of 40 dB, amplitude difference of 1.4 dB. For the transmission of downstream in the PON, differential phase shift keying was employed at 10 Gbps data speed. Transmission distance achieved was 30 km using single-mode fiber and this was a part of optical distribution network. Optical network unit was next part after ODN and signals were received with balanced receiver. Moreover, half signal was given to intensity modulator for the signal re-modulation. Bit error rate of 10–9 was achieved at all channels in the downstream. An upstream of 10 Gbps was accomplished in the passive optical network.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Maria Morant ◽  
Joaquin Pérez ◽  
Roberto Llorente

This paper describes the state-of-the-art of polarization multiplexing for optical networks transmission. The use of polarization division multiplexing (PDM) permits to multiply the user capacity and increase the spectral efficiency. Combining PDM and orthogonal frequency division multiplexed (OFDM) modulation allows maximizing the optical transmission capacity. The experimental demonstration of transmitting OFDM signals following ECMA-368 ultrawide band (UWB) standard in radio-over-fiber using PDM in passive optical networks is herein reported. The impact of cross-polarization and cochannel crosstalk is evaluated experimentally in a three-user OFDM-UWB subcarrier multiplexed (SCM) configuration per polarization. Each SCM uses up to three OFDM-UWB channels of 200 Mbit/s each, achieving an aggregated bitrate of 1.2 Gbit/s with 0.76 bit/s/Hz spectral efficiency when using PDM transmission. The experimental results for the polarization-multiplexed SCM indicate that a 4 dB additional polarization crosstalk interference can be expected compared to a nonpolarization-multiplexed transmission system which translates to 2.4 dB EVM penalty in the UWB signals. The successful PDM transmission of SCM multiuser OFDM-UWB over a passive optical network of 25 km standard-single mode fiber (SSMF) reach is demonstrated.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Simarpreet Kaur ◽  
Mahendra Kumar ◽  
Ashu Verma

AbstractWe demonstrated a full duplex hybrid passive optical network and indoor optical wireless system employing coherent optical frequency division multiplexing. To accomplish reliable transmission in passive optical networks integrated visible-light communication (VLC), yellow light-emitting diode and infrared LED is used in downstream and upstream, respectively, for intra building network. In order to support high data rate, pulse-width reduction scheme based on dispersion compensation fiber is incorporated and system successfully covered the distance of 50 km. A data stream at the rate of 30 Gb/s is transmitted for each user out of eight users. VLC-supported users are catered with the bit rate of 1.87 Gb/s over 150 cm and in order to realize a low-cost system, visible and infrared LEDs are used in downlink and uplink, respectively.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Ranbir Singh Mohal ◽  
Rajbir Kaur ◽  
Charanjit Singh

Abstract Long band (L-Band) passive optical networks (PONs) are attracting a lot of attention these days, thanks to rising capacity demands. Because of PONs requesting more and more channels, fault detection/monitoring is critical. Fault detection in the conventional band (C-Band) employing reflecting Fiber Bragg Gratings (FBGs) and a probe signal integrating an additional amplified spontaneous noise (ASEN) source has been frequently demonstrated. However, interference occurs when ASEN and transmitter signals are in the same wavelength band, and adding additional ASEN sources to the network raises the overall cost. So, in L-Band PONs, a cost-effective, low-complexity fault detection/monitoring system is required. Therefore, in this work, a fault detection/monitoring system for L-Band PON using C-Band ASEN from inline erbium doped fiber amplifier (EDFA) and dual purpose FBG, i.e. (1) ASEN reflection for fault monitoring and (2) dispersion compensation is proposed. A 4 × 10 Gbps L-Band PON is investigated over 40 km feeder fiber (FF) and 1 km drop fibers (DFs) that serve 32 optical network units (ONUs)/different input powers, dispersion values, and laser linewidths in terms of reflective power of FBGs, eye opening factor, and bit error rate (BER), respectively.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikhlesh Kumar Mishra ◽  
Kamal Kishore Upadhyay ◽  
N. K. Shukla

AbstractFor addressing needs of modern day communication needs, new type of networks are required to be evolved to cater the demand of high data rates. Use of survivable elastic-optical-network (EON) with existing passive-optical-networks (PON) may provide the solution for this. The present work focus on employing EON–PON based wave-length-division multiplexing enabled communication system comprises of 2×5 Gbps for downlink and 2×1 Gbps for uplink over a single-mode-fibre of length 100 km. The results are the evaluated via bit-error-rate analyser, q factor and eye diagrams.


2015 ◽  
Vol 15 (10) ◽  
pp. 7462-7466
Author(s):  
Su Hwan Oh ◽  
Ki-Hong Yoon ◽  
Seung-Hyun Cho ◽  
Jun-Kyu Seo

We report the transmission capability of a tunable external cavity laser (T-ECL) that utilizes a super-luminescent diode (SLD) and a polymer Bragg reflector (PBR) operating with a direct modulation of 2.5 Gb/s for a light source of a long-reach wavelength division multiplexed-passive optical network (WDM-PON). The T-ECL successfully operated at an ambient temperature of −20 °C to 70 °C when employing a cooled SLD. A tuning range of 12-nm is achieved with a tuning power of lower than 80 mW. A side mode suppression ratio of more than 35 dB was obtained for the whole tuning range. The linewidth of the lasing spectrum is less than 0.1 nm at 20 dB from the peak power. The transmission performance of the T-ECL, including an optical bandpass filter (OBPF), is better than that of the T-ECL excluding an OBPF for a long-reach transmission over 80 km of single mode fiber (SMF). The power penalty of the T-ECL is less than 1.4 dB when using an OBPF for an 80-km transmission.


Sign in / Sign up

Export Citation Format

Share Document