scholarly journals Scattering of Lower Hybrid Waves in a Magnetized Plasma

Physics ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 640-653
Author(s):  
Brunello Tirozzi

In this paper, the Maxwell equations for the electric field in a cold magnetized plasma in the half-space of x≥0 cm are solved. The boundary conditions for the electric field include a pointwise source at the plane x=0 cm, the derivatives of the electric field that are zero statV/cm2 at x=0 cm, and the field with all its derivatives that are zero at infinity. The solution is explored in terms of the Laplace transform in x and the Fourier transform in y-z directions. The expressions of the field components are obtained by the inverse Laplace transform and the inverse Fourier transform. The saddle-point technique and power expansion have been used for evaluating the inverse Fourier transform. The model represents the propagation of a lower hybrid wave generated by a pointwise antenna located at the boundary of the plasma. Here, the antenna is the boundary condition. The validation of the model is performed assuming that the electric field component Ey=0 statV/cm and by comparing it with the model of electromagnetic waves generated by a local small antenna located near the boundary of a tokamak, and an experiment is suggested.

Geophysics ◽  
1977 ◽  
Vol 42 (7) ◽  
pp. 1384-1393 ◽  
Author(s):  
Anas M. Abo‐Zena

For an elastic material with an infinite circular cylindrical hole, the exact solution due to a pressure on a finite length of the cylinder is obtained as a function of the Laplace transform parameter on time and Fourier transform parameter on the z-coordinate (the axis of the cylinder). The applied pressure is a function of the time and the position z. Numerical inversion of the Laplace and Fourier transforms are required to determine the field quantities in the time and space parameters. In the far field, the inverse Fourier transform can be obtained by an asymptotic expansion. It remains to obtain the inverse Laplace transform numerically. We have found that for cylinders whose radius is small compared with the smallest wavelength of interest, an analytical solution can be obtained. Graphical results for the cases of instantaneous explosion and progression of the detonation with constant velocity are given. In both cases an exponential decay of the explosion pressure is assumed.


Geophysics ◽  
1982 ◽  
Vol 47 (1) ◽  
pp. 47-50 ◽  
Author(s):  
J. H. Knight ◽  
A. P. Raiche

Calculations for the transient electromagnetic (TEM) method are commonly performed by using a discrete Fourier transform method to invert the appropriate transform of the solution. We derive the Laplace transform of the solution for TEM soundings over an N‐layer earth and show how to use the Gaver‐Stehfest algorithm to invert it numerically. This is considerably more stable and computationally efficient than inversion using the discrete Fourier transform.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Raheel Kamal ◽  
Kamran ◽  
Gul Rahmat ◽  
Ali Ahmadian ◽  
Noreen Izza Arshad ◽  
...  

AbstractIn this article we propose a hybrid method based on a local meshless method and the Laplace transform for approximating the solution of linear one dimensional partial differential equations in the sense of the Caputo–Fabrizio fractional derivative. In our numerical scheme the Laplace transform is used to avoid the time stepping procedure, and the local meshless method is used to produce sparse differentiation matrices and avoid the ill conditioning issues resulting in global meshless methods. Our numerical method comprises three steps. In the first step we transform the given equation to an equivalent time independent equation. Secondly the reduced equation is solved via a local meshless method. Finally, the solution of the original equation is obtained via the inverse Laplace transform by representing it as a contour integral in the complex left half plane. The contour integral is then approximated using the trapezoidal rule. The stability and convergence of the method are discussed. The efficiency, efficacy, and accuracy of the proposed method are assessed using four different problems. Numerical approximations of these problems are obtained and validated against exact solutions. The obtained results show that the proposed method can solve such types of problems efficiently.


Author(s):  
Mohammed Abdulhameed ◽  
Garba Tahiru Adamu ◽  
Gulibur Yakubu Dauda

In this paper, we construct transient electro-osmotic flow of Burgers’ fluid with Caputo fractional derivative in a micro-channel, where the Poisson–Boltzmann equation described the potential electric field applied along the length of the microchannel. The analytical solution for the component of the velocity profile was obtained, first by applying the Laplace transform combined with the classical method of partial differential equations and, second by applying Laplace transform combined with the finite Fourier sine transform. The exact solution for the component of the temperature was obtained by applying Laplace transform and finite Fourier sine transform. Further, due to the complexity of the derived models of the governing equations for both velocity and temperature, the inverse Laplace transform was obtained with the aid of numerical inversion formula based on Stehfest's algorithms with the help of MATHCAD software. The graphical representations showing the effects of the time, retardation time, electro-kinetic width, and fractional parameters on the velocity of the fluid flow and the effects of time and fractional parameters on the temperature distribution in the micro-channel were presented and analyzed. The results show that the applied electric field, electro-osmotic force, electro-kinetic width, and relaxation time play a vital role on the velocity distribution in the micro-channel. The fractional parameters can be used to regulate both the velocity and temperature in the micro-channel. The study could be used in the design of various biomedical lab-on-chip devices, which could be useful for biomedical diagnosis and analysis.


1990 ◽  
Vol 43 (2) ◽  
pp. 165-172 ◽  
Author(s):  
V. N. Pavlenko ◽  
V. G. Panchenko

Fluctuations and scattering of transverse electromagnetic waves by density fluctuations in a magnetized plasma in the presence of parametric decay of the pump wave are investigated. The spectral density of electron-density fluctuations is calculated. It is shown that the differential scattering cross-section has sharp maxima at the ion-acoustic and lower-hybrid frequencies when parametric decay of the lower-hybrid pump wave occurs. We note that scattering at the ion-acoustic frequency is dominant. When the pump-wave amplitude tends to the threshold strength of the electric field the scattering cross-section increases anomalously, i.e. there is critical opalescence.


Author(s):  
Z Y Lee ◽  
C L Chang

This paper deals with axisymmetric quasi-static coupled thermoelastic problems for multilayered spheres. Laplace transforms and finite difference methods are used to analyse the problems. Using the Laplace transform with respect to time, the general solutions of the governing equations are obtained in the transform domain. The solution is obtained by using the matrix similarity transformation and inverse Laplace transform. Solutions are obtained for the temperature and thermal deformation distributions for the transient and steady state. It is demonstrated that the computational procedures established in this paper are capable of solving the generalized thermoelasticity problem of multilayered spheres.


2020 ◽  
Vol 13 (07) ◽  
pp. 2050061
Author(s):  
Huiping Zhang ◽  
Shuyue Wang ◽  
Zhonghui Ou

The citrate secreted by the rice (Oryza sativa L.) roots will promote the absorption of phosphate, and this process is described by the Kirk model. In our work, the Kirk model is divided into citrate sub-model and phosphate sub-model. In the citrate sub-model, we obtain the analytical solution of citrate with the Laplace transform, inverse Laplace transform and convolution theorem. The citrate solution is substituted into the phosphate sub-model, and the analytical solution of phosphate is obtained by the separation variable method. The existence of the solutions can be proved by the comparison test, the Weierstrass M-test and the Abel discriminating method.


Author(s):  
Michael J Corinthios

In this paper, the author uses his recently proposed complex variable generalized distribution theory to expand the domains of existence of bilateral Laplace and z transforms, as well as a whole new class of related transforms. A vast expansion of the domains of existence of bilateral Laplace and z transforms and continuous-time and discrete-time Hilbert, Hartley and Mellin transforms, as well as transforms of multidimensional functions and sequences are obtained. It is noted that the Fourier transform and its applications have advanced by leaps and bounds during the last century, thanks to the introduction of the theory of distributions and, in particular, the concept of the Dirac-delta impulse. Meanwhile, however, the truly two-sided ‘bilateral’ Laplace and z transforms, which are more general than Fourier, remained at a standstill incapable of transforming the most basic of functions. In fact, they were reduced by half to one-sided transforms and received no more than a passing reference in the literature. It is shown that the newly proposed generalized distributions expand the domains of existence and application of Laplace and z transforms similar to and even more extensively than the expansion of the domain of Fourier transform that resulted from the introduction, nearly a century ago, of the theory of distributions and the Dirac-delta impulse. It is also shown that the new generalized distributions put an end to an anomaly that still exists today, which meant that for a large class of basic functions, the Fourier transform exists while the more general Laplace and z transforms do not. The anomaly further manifests itself in the fact that even for the one-sided causal functions, such as the Heaviside unit step function u ( t ) and the sinusoid sin βtu ( t ), the Laplace transform does not exist on the j ω -axis, and the Fourier transform which does exist cannot be deduced thereof by the substitution s =j ω in the Laplace transform, which by definition it should. The extended generalized transforms are well defined for a large class of functions ranging from the most basic to highly complex fast-rising exponential ones that have so far had no transform. Among basic applications, the solution of partial differential equations using the extended generalized transforms is provided. This paper clearly presents and articulates the significant impact of extending the domains of Laplace and z transforms on a large family of related transforms, after nearly a century during which bilateral Laplace and z transforms of even the most basic of functions were undefined, and the domains of definition of related transforms such as Hilbert, Hartley and Mellin transforms were confined to a fraction of the space they can now occupy.


Sign in / Sign up

Export Citation Format

Share Document