scholarly journals Elevated CO2 and Reactive Oxygen Species in Stomatal Closure

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 410
Author(s):  
Xiaonan Ma ◽  
Ling Bai

Plant guard cell is essential for photosynthesis and transpiration. The aperture of stomata is sensitive to various environment factors. Carbon dioxide (CO2) is an important regulator of stomatal movement, and its signaling includes the perception, transduction and gene expression. The intersections with many other signal transduction pathways make the regulation of CO2 more complex. High levels of CO2 trigger stomata closure, and reactive oxygen species (ROS) as the key component has been demonstrated function in this regulation. Additional research is required to understand the underlying molecular mechanisms, especially for the detailed signal factors related with ROS in this response. This review focuses on Arabidopsis stomatal closure induced by high-level CO2, and summarizes current knowledge of the role of ROS involved in this process.

2015 ◽  
Vol 411 (1-2) ◽  
pp. 317-330 ◽  
Author(s):  
Sergey Bolevich ◽  
Alekandr Haritonovic Kogan ◽  
Vladimir Zivkovic ◽  
Dusan Djuric ◽  
Aleksey Aleksejevic Novikov ◽  
...  

2016 ◽  
Vol 397 (7) ◽  
pp. 657-660 ◽  
Author(s):  
Simone Fulda

Abstract Necroptosis has recently been identified as an alternative form of programmed cell death that is characterized by defined molecular mechanisms. Reactive oxygen species (ROS) are involved in the regulation of numerous signaling pathways, as they are highly reactive and can cause (ir)reversible posttranslational modifications. While the role of ROS in other modes of cell death has been extensively studied, its impact on necroptotic signaling and cell death is far less clear. The current minireview discusses the evidence for and against a role of ROS in necroptosis.


Sign in / Sign up

Export Citation Format

Share Document