scholarly journals Protocorm-Supporting Fungi Are Retained in Roots of Mature Tipularia discolor Orchids as Mycorrhizal Fungal Diversity Increases

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1251
Author(s):  
Melissa McCormick ◽  
Robert Burnett ◽  
Dennis Whigham

Mycorrhizal fungi are critical to understanding the distribution patterns of many plants, but they are especially important for orchids. Some orchids may change the mycorrhizal fungi they use through their lives, either in response to changes in abiotic or biotic conditions, or as a result of ontogenetic changes that alter the orchid’s need for fungal nutrition. The temperate terrestrial orchid Tipularia discolor germinates only on decomposing wood, but often persists well after the wood has completely decomposed and has been incorporated into the soil. We used PCR and Sanger sequencing to ask: (1) Do mature T. discolor retain protocorm fungi or are protocorm and adult mycorrhizal fungi mutually exclusive? (2) Are protocorm fungi limited to areas with decomposing wood? (3) Does the abundance of protocorm fungi in the substrate differ between decomposing wood and bare soil? We found that T. discolor retained protocorm fungi into maturity, regardless of whether they were growing in persistent decomposing wood or soil. Protocorm fungi were not restricted to decomposing wood but were more common and abundant in it. We conclude that the mycorrhizal fungi associated with T. discolor change during the ontogeny of individuals. These results highlight the importance of assessing protocorm fungi, in addition to mycorrhizal fungi associating with adult orchids, to understand the conditions needed for orchid germination, growth, and reproduction.

2009 ◽  
Vol 61 (4) ◽  
pp. 819-825
Author(s):  
A. Mijovic ◽  
N. Stavretovic ◽  
Zorica Popovic

Population dynamics of the species Plantago major L. and Poa annua L., typical representatives of ruderal vegetation, was analyzed in a replacement series experiment. The analyzed species were sown in an area with meadow vegetation, where the vegetation present had been previously removed by a total herbicide and additionally by hoeing. The objective of the experiment was to monitor growth dynamics and the effect of intra- and inter-specific interaction of the species Plantago major and Poa annua in conditions of different sowing densities and proportions. The effects of intra- and inter-specific interference and the density-dependent responses were assessed on the basis of several parameters (natality, mortality, age structure, and measures of ontogenetic changes). Based on the study results, it can be concluded that the responses of the species in the experiment were different, which is explained by different adaptive mechanisms, i.e., strategies, in the specific environmental conditions. An effect of the density dependent response was present in both species in the replacement series experiment. The response was amplified by water deficit caused by intensive evapora?tion of the bare soil. No effect of inter-specific interference was observed at the given densities of the study species on the sample plots. An effect of intra-specific interference of the species Plantago major and Poa annua was observed in the guise of a density-negative response of the rate of ontogenetic changes and fecundity.


Author(s):  
K. V. Davydenko ◽  
N. Yu. Vysotska ◽  
V. S. Yushchyk ◽  
T. Yu. Markina

Forest fires constitute widespread and potentially destructive disturbances in forest ecosystems, particularly negative impact on soil mycorrhizal fungi which are major players of the belowground plant. This study investigated the short-term effects of wildfire on fungal communities in Left-Bank Ukraine with special emphasis on mycorrhizal fungi. During the fourteen months after autumn wildfire, fruiting bodies found in the plots were identified, and their mycological richness, diversity and production in both burned and unburnt areas were measured. Total fungal diversity decreased in burned plots, where fungal richness and diversity of mycorrhizal species were significantly lower. Our results also confirmed the data on a rather destructive influence of post-fire forest management on fungal diversity. Only three mycorrhizal fungi associated with Pinus sylvestris L. were common to both sites while pyrophilic species were in close association with burned sites. 3 Figs., 1 Table, 31 Refs. Key words: mycorrhiza, pine plantation, post-fire erosion, wildfire.


2020 ◽  
Author(s):  
Devin R. Leopold ◽  
Kabir G. Peay ◽  
Peter M. Vitousek ◽  
Tadashi Fukami

AbstractEricaceous plants rely on ericoid mycorrhizal fungi for nutrient acquisition. However, the factors that affect the composition and structure of these fungal communities remain largely unknown. Here, we use a 4.1-myr soil chronosequence in Hawaii to test the hypothesis that changes in nutrient availability with soil age determine the diversity and species composition of fungi associated with ericoid roots. We sampled roots of a native Hawaiian plant, Vaccinium calycinum, and used DNA metabarcoding to quantify changes in fungal diversity and species composition. We also used a fertilization experiment at the youngest and oldest sites to assess the importance of nutrient limitation. We found an increase in diversity and a clear pattern of species turnover across the chronosequence, driven largely by putative ericoid mycorrhizal fungi. Fertilization with nitrogen at the youngest site and phosphorus at the oldest site reduced total fungal diversity, suggesting a direct role of nutrient limitation. Our results also reveal the presence of novel fungal species associated with Hawaiian Ericaceae and suggest a greater importance of phosphorus availability for communities of ericoid mycorrhizal fungi than is generally assumed.


Lankesteriana ◽  
2015 ◽  
Vol 7 (1-2) ◽  
Author(s):  
Emily McQualter ◽  
Rob Cross ◽  
Cassandra McLean ◽  
Pauline Ladiges

Most members of the genus Prasophyllum (Leek Orchids) are threatened and restricted in distribution in Australia. Prasophyllum species are obligate mycotrophic plants and current conservation proto- cols for terrestrial orchids in Australia require propa- gation with symbiotic mycorrhizal fungi. Unfortunately there is a paucity of knowledge regard- ing the mycosymbiont in this genus, hampering con- servation and re-introduction efforts.


2019 ◽  
Vol 7 (11) ◽  
pp. 505 ◽  
Author(s):  
Katarína Ondreičková ◽  
Marcela Gubišová ◽  
Michaela Piliarová ◽  
Miroslav Horník ◽  
Pavel Matušinský ◽  
...  

Due to the increasing sewage sludge production in the world and problems with its disposal, an application of sludge to the soil appears to be a suitable solution considering its fertilizer properties and ability to improve the soil physical conditions. On the other hand, the sludge may also contain undesirable and toxic substances. Since soil microorganisms are sensitive to environmental changes, they can be used as indicators of soil quality. In this study, we used sewage sludge (SS) from two municipal wastewater treatment plants (SS-A and SS-B) in the dose of 5 t/ha and 15 t/ha in order to determine possible changes in the fungal community diversity, especially arbuscular mycorrhizal fungi (AMF), in the rhizosphere of Arundo donax L. Rhizosphere samples were collected in summer and autumn for two consecutive years and the fungal diversity was examined using terminal restriction fragment length polymorphism and 18S rDNA sequencing. Fungal alpha diversity was more affected by SS-A than SS-B probably due to the higher heavy metal content. However, based on principal component analysis and ANOSIM, significant changes in overall fungal diversity were not observed. Simultaneously, 18S rDNA sequencing showed that more various fungal taxa were detected in the sample with sewage sludge than in the control. Glomus sp. as a representative of AMF was the most represented. Moreover, Funneliformis in both samples and Rhizophagus in control with Septoglomus in the sludge sample were other representatives of AMF. Our results indicate that the short-term sewage sludge application into the soil does not cause a shift in the fungal community composition.


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 412
Author(s):  
Savanna Wooten ◽  
Geoff Call ◽  
Adam Dattilo ◽  
Jennifer Cruse-Sanders ◽  
Jennifer Nagel Boyd

Translocation is increasingly being used to supplement existing occurrences and establish new occurrences of rare plant species, but translocation success is dependent on understanding responses to habitat conditions and management. Platanthera integrilabia (white fringeless orchid) is a rare terrestrial orchid species presently found in mostly small occurrences that comprise a fraction of its historical distribution and abundance in the southeastern United States. We investigated the influence of shade and white-tailed deer herbivory, as cited concerns for this species, on the early success of its translocation from tubers as determined through measures of emergence, survival, growth, and reproduction of two cohorts. Our findings suggest that translocation from tubers could be a viable option to assist the conservation of P. integrilabia relative to its propagation from seed, but that low early emergence, survival, and flowering rates should be considered in translocation plans. Our results also indicate that translocation and ongoing habitat management should consider the potential for light availability to differentially impact distinct plant life stages and influence deer herbivory. We recommend that additional translocation studies designed to investigate the influence of site conditions on outcomes could improve the success of such efforts as well as inform the management of extant occurrences.


2015 ◽  
Vol 17 (8) ◽  
pp. 2747-2761 ◽  
Author(s):  
Elisa Taschen ◽  
Mathieu Sauve ◽  
Adrien Taudiere ◽  
Javier Parlade ◽  
Marc-André Selosse ◽  
...  

2018 ◽  
Author(s):  
Hiromu Kameoka ◽  
Taro Maeda ◽  
Nao Okuma ◽  
Masayoshi Kawaguchi

AbstractArbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with most land plants, mainly for the purpose of nutrient exchange. Many studies have revealed the regulation of absorption, metabolism, and transfer of nutrients in AMF and the genes involved in these processes. However, the spatial regulation of the genes among the structures comprising each developmental stage are not well understood. Here, we demonstrate the structure-specific transcriptome of the model AMF species, Rhizophagus irregularis. We performed an ultra-low input RNA-seq analysis, SMART-seq2, comparing five extraradical structures, germ tubes, runner hyphae, branched absorbing structures, immature spores, and mature spores. In addition, we reanalyzed the recently reported RNA-seq data comparing intraradical hyphae and arbuscules. Our analyses captured the distinct features of each structure and revealed the structure-specific expression patterns of genes related to absorption, metabolism, and transfer of nutrients. Of note, the transcriptional profiles suggest the distinct functions of branched absorbing structures in nutrient absorption. These findings provide a comprehensive dataset to advance our understanding of the transcriptional dynamics of fungal nutrition in this symbiotic system.


Author(s):  
Xiang Dong Sun ◽  
Hong Shan ◽  
Lili Li ◽  
Ping Su ◽  
Jing Lan ◽  
...  

Maize is a major crop in China and maize production in Heilongjiang Province ranks No.1 in the country in annual maize production in the whole country. Maize is prone to invasion by fungi and mycotoxins produced by these fungi are proven to be serious threats to animals as well as human health. Through high through-put sequencing we detected the dominant phylum to be Ascomycota; Dothideomycetes, Sordariomycetes, Eurotiomycetes and Tremellomycetes, Saccharomycetes were the dominant classes; Hypocreales, Eurotiales, Capnodiales, Saccharomycetales, Tremellales, and Pleosporales were the main orders; Nectriaceae, Trichocomaceae, Cladosporiaceae, Debaryomycetaceae, Tremellaceae, and Pleosporaceae were major families; Gibberella, Cladosporium, Papiliotrema, Penicillium, Scheffersomyces, Talaromyces, and Epicoccum were the most abundant phylotypes at the genus level. Epicoccum_nigrum, Gibberella_zeae, Papiliotrema_flavescens, and Scheffersomyces_shehatae were the dominant fungal species. Great fungal diversity was observed in the maize samples harvested in the five major maize-growing regions in Heilongjiang Province. Maize-1 in Nenjiang County was observed to have the greatest fungal diversity and abundance among the five regions. Since some of the fungal species are mycotoxin producing, it is necessary to take precautions to ensure the maize is stored under safe conditions to prevent the occurrence of mycotoxins and the growth and reproduction of other fungi which results in deterioration in the quality of maize.


Lankesteriana ◽  
2015 ◽  
Vol 7 (1-2) ◽  
Author(s):  
Kelli Gowland ◽  
Ulrike Mathesius ◽  
Mark Clements ◽  
Adrienne Nicotra

Understanding the environmental constraints that affect species distributions are critical to the mainte- nance of biodiversity. The abundance of epiphytic organisms, those that grow on another substrate, such as a tree or rock, is a direct consequence of the avail- ability and distribution of these substrates (Ackerman et al. 1989). In the case of epiphytic orchids it is also due to the presence of orchid mycorrhizal fungi (OMF). For an orchid, crucial to its germination and establishment, is its association with an OMF. The OMF provides a carbon source to the developing orchid embryo (Rasmussen 1995). Although recipro- cal carbon transfer has been demonstrated in mature plants of a green, terrestrial, orchid species, Goodyera repens (Cameron et al. 2006), it is generally believed that OMF receive no immediate benefit from their association with orchids. Therefore, it would appear intuitive that orchids would associate with all OMF available within their local environment and that they would actively seek this association. 


Sign in / Sign up

Export Citation Format

Share Document